
[Chapter 1] Oracle PL/SQL Language Pocket Reference

Table of Contents
1. Oracle PL/SQL Language Pocket Reference...2

1.1 Introduction..2
...3

1.2 Acknowledgments..3
...4

1.3 Conventions...4
...5

1.4 PL/SQL Language Fundamentals..5
1.4.1 The PL/SQL Character Set..5

...10
1.5 Variables and Program Data..10

1.5.1 Scalar Datatypes..10
1.5.2 NLS Character Datatypes..13
1.5.3 LOB Datatypes..13
1.5.4 NULLs in PL/SQL...13
1.5.5 Declaring Variables...14
1.5.6 Anchored Declarations..14
1.5.7 Programmer−Defined Subtypes...15

...17
1.6 Conditional and Sequential Control...17

1.6.1 Conditional Control Statements...17
1.6.2 Sequential Control Statements...18

...19
1.7 Loops...19

1.7.1 The Simple Loop...19
1.7.2 The Numeric FOR Loop..19
1.7.3 The Cursor FOR Loop...20
1.7.4 The WHILE Loop..20
1.7.5 The REPEAT UNTIL Loop Emulation...20
1.7.6 The EXIT Statement..21
1.7.7 Loop Labels...21

...22
1.8 Database Interaction and Cursors..22

1.8.1 Transaction Management...22
1.8.2 Native Dynamic SQL (Oracle8i)...23
1.8.3 Autonomous Transactions (Oracle8i)..24

...26
1.9 Cursors in PL/SQL...26

1.9.1 Explicit Cursors...26
1.9.2 Implicit Cursors...28
1.9.3 Cursor Variables..30

...32
1.10 Exception Handling...32

1.10.1 Declaring Exceptions...32
1.10.2 Raising Exceptions..33
1.10.3 Scope..34
1.10.4 Propagation..34

...36
1.11 Records in PL/SQL..36

1.11.1 Declaring Records..36
1.11.2 Referencing Fields of Records...37
1.11.3 Record Assignment..37

[Chapter 1] Oracle PL/SQL Language Pocket Reference

i

Table of Contents
1.11.4 Nested Records..38

...39
1.12 Named Program Units..39

1.12.1 Procedures..39
1.12.2 Functions..39
1.12.3 Parameters..41

...46
1.13 Triggers..46

1.13.1 Creating Triggers...46
1.13.2 Trigger Predicates..47
1.13.3 DML Events...48
1.13.4 DDL Events (Oracle8i)..48
1.13.5 Database Events (Oracle8i)...48

...49
1.14 Packages...49

1.14.1 Overview of Package Structure...49
1.14.2 Referencing Package Elements..50
1.14.3 Package Data..51
1.14.4 Package Initialization...51

...53
1.15 Calling PL/SQL Functions in SQL..53

1.15.1 Syntax for Calling Stored Functions in SQL...53
1.15.2 Requirements and Restrictions on Stored Functions in SQL..53
1.15.3 Calling Packaged Functions in SQL..54

...56
1.16 Oracle8 Objects..56

1.16.1 Object Types..56
1.16.2 Methods...57
1.16.3 Manipulating Objects in PL/SQL and SQL...58
1.16.4 Changing Object Types...60

...62
1.17 Collections...62

1.17.1 Syntax for Declaring Collection Datatypes...63
1.17.2 Initializing Collections...63
1.17.3 Adding and Removing Elements...64
1.17.4 Collection Pseudo−Functions..65
1.17.5 Collection Methods..65
1.17.6 Privileges...67
1.17.7 Bulk Binds (Oracle8i)..67

...69
1.18 External Procedures...69

1.18.1 Creating an External Procedure...69
1.18.2 Parameters..71

...73
1.19 Java Language Integration...73

1.19.1 Example...73
1.19.2 Publishing Java to PL/SQL..74
1.19.3 Data Dictionary..75

...76
Table of Contents...76

[Chapter 1] Oracle PL/SQL Language Pocket Reference

ii

Chapter 1

1

1. Oracle PL/SQL Language Pocket Reference
Contents:
Introduction
Acknowledgments
Conventions
PL/SQL Language Fundamentals
Variables and Program Data
Conditional and Sequential Control
Loops
Database Interaction and Cursors
Cursors in PL/SQL
Exception Handling
Records in PL/SQL
Named Program Units
Triggers
Packages
Calling PL/SQL Functions in SQL
Oracle8 Objects
Collections
External Procedures
Java Language Integration

1.1 Introduction

The Oracle PL/SQL Language Pocket Reference is a quick reference guide to the PL/SQL programming
language, which provides procedural extensions to the SQL relational database language and a range of
Oracle development tools.

Where a package, program, or function is supported only for a particular version of Oracle (e.g., Oracle8i), we
indicate this in the text.

The purpose of this pocket reference is to help PL/SQL users find the syntax of specific language elements. It
is not a self−contained user guide; basic knowledge of the PL/SQL programming language is required. For
more information, see the following books:

Oracle PL/SQL Programming, 2nd Edition, by Steven Feuerstein with Bill Pribyl (O'Reilly & Associates,
1997).

Oracle Built−in Packages, by Steven Feuerstein, Charles Dye, and John Beresniewicz (O'Reilly &
Associates, 1998).

Oracle PL/SQL Built−ins Pocket Reference, by Steven Feuerstein, John Beresniewicz, and Chip Dawes
(O'Reilly & Associates, 1998).

1.2 Acknowledgments

Copyright (c) 2000 O'Reilly & Associates. All rights reserved.

1. Oracle PL/SQL Language Pocket Reference 2

Chapter 1
Oracle PL/SQL Language

Pocket Reference

1.2 Acknowledgments

We would like to thank our reviewers: Eric J. Givler, Department of Environmental Protection, Harrisburg,
Pennsylvania; and Stephen Nelson, HK Systems, New Berlin, Wisconsin.

1.1 Introduction 1.3 Conventions

Copyright (c) 2000 O'Reilly & Associates. All rights reserved.

3

Chapter 1
Oracle PL/SQL Language

Pocket Reference

1.3 Conventions

UPPERCASE indicates PL/SQL keywords.

lowercase indicates user−defined items such as parameters.

Italic indicates file names and parameters within text.

Constant width is used for code examples.

[] enclose optional items in syntax descriptions.

{ } enclose a list of items in syntax descriptions; you must choose one item from the list.

| separates bracketed list items in syntax descriptions.

1.2 Acknowledgments 1.4 PL/SQL Language
Fundamentals

Copyright (c) 2000 O'Reilly & Associates. All rights reserved.

4

Chapter 1
Oracle PL/SQL Language

Pocket Reference

1.4 PL/SQL Language Fundamentals

1.4.1 The PL/SQL Character Set

The PL/SQL language is constructed from letters, digits, symbols, and whitespace, as defined in the following
table.

Type Characters

Letters A−Z, a−z

Digits 0−9

Symbols ~!@#$%&*()_−+=|[]{ }:;"'< >?/

Whitespacespace, tab, carriage return

Characters are grouped together into the four lexical units: identifiers, literals, delimiters, and comments.

1.4.1.1 Identifiers

Identifiers are names for PL/SQL objects such as constants, variables, exceptions, procedures, cursors, and
reserved words. Identifiers:

•
Can be up to 30 characters in length

•
Cannot include whitespace (space, tab, carriage return)

•
Must start with a letter

•
Can include a dollar sign ($), an underscore (_), and a pound sign (#)

•
Are not case−sensitive

If you enclose an identifier within double quotes, then all but the first of these rules are ignored. For example,
the following declaration is valid:

DECLARE
 "1 ^abc" VARCHAR2(100);
BEGIN
 IF "1 ^abc" IS NULL THEN ...
END;

5

1.4.1.2 Literals

Literals are specific values not represented by identifiers. For example, TRUE, 3.14159, 6.63E−34, `Moby
Dick', and NULL are all literals of type Boolean, number, or string. There are no date or complex datatype
literals as they are internal representations. Unlike the rest of PL/SQL, literals are case−sensitive. To embed
single quotes within a string literal, place two single quotes next to each other. See the following table for
examples.

Literal Actual Value

'That''s Entertainment!' That's Entertainment!

'"The Raven"' "The Raven"

'TZ="CDT6CST"' TZ='CDT6CST'

'''' '

'''hello world''' 'hello world'

'''''' ''

1.4.1.3 Delimiters

Delimiters are symbols with special meaning, such as := (assignment operator), || (concatenation operator),
and ; (statement delimiter). The following table lists delimiters.

Delimiter Description

; Statement terminator

+ Addition operator

− Subtraction operator

* Multiplication operator

/ Division operator

** Exponentiation operator

|| Concatenation operator

:= Assignment operator

= Equality operator

<> and != Inequality operators

^= and ~= Inequality operators

< "Less than" operator

<= "Less than or equal to" operator

> "Greater than" operator

>= "Greater than or equal to" operator

(and) Expression or list delimiters

<< and >> Label delimiters

, Item separator

` Literal delimiter

" Quoted literal delimiter

: Host variable indicator

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.4.1 The PL/SQL Character Set 6

% Attribute indicator

. Component indicator (as in record.field or package.element)

@ Remote database indicator (database link)

=> Association operator (named notation)

.. Range operator (used in the FOR loop)

−− Single−line comment indicator

/* and */ Multiline comment delimiters

1.4.1.4 Comments

Comments are sections of the code that exist to aid readability. The compiler ignores them.

A single−line comment begins with a double hyphen (��) and ends with a new line. The compiler ignores all
characters between the �� and the new line.

Multiline comments begin with slash asterisk (/*) and end with asterisk slash (*/). The /* */ comment
delimiters can also be used on a single−line comment. The following block demonstrates both kinds of
comments:

DECLARE
 −− Two dashes comment out only the physical line.
 /* Everything is a comment until the compiler
 encounters the following symbol */

You cannot embed multiline comments within a multiline comment, so care needs to be exercised during
development if you comment out portions of code that include comments. The following code demonstrates:

DECLARE
 /* Everything is a comment until the compiler
 /* This comment inside another WON'T work!*/
 encounters the following symbol. */

 /* Everything is a comment until the compiler
 −− This comment inside another WILL work!
 encounters the following symbol. */

1.4.1.5 Pragmas

The PRAGMA keyword is used to give instructions to the compiler. There are four types of pragmas in
PL/SQL:

EXCEPTION_INIT
Tells the compiler to associate the specified error number with an identifier that has been declared an
EXCEPTION in your current program or an accessible package. See the Section 1.10, "Exception
Handling " section for more information on this pragma.

RESTRICT_REFERENCES
Tells the compiler the purity level of a packaged program. The purity level is the degree to which a
program does not read/write database tables and/or package variables. See the Section 1.15, "Calling
PL/SQL Functions in SQL" section for more information on this pragma.

SERIALLY_REUSABLE
Tells the runtime engine that package data should not persist between references. This is used to
reduce per−user memory requirements when the package data is only needed for the duration of the
call and not for the duration of the session. See the Section 1.14, "Packages" section for more

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.4.1 The PL/SQL Character Set 7

information on this pragma.

AUTONOMOUS_TRANSACTION (Oracle8i)
Tells the compiler that the function, procedure, top−level anonymous PL/SQL block, object method,
or database trigger executes in its own transaction space. See the Section 1.8, "Database Interaction
and Cursors " section for more information on this pragma.

1.4.1.6 Statements

A PL/SQL program is composed of one or more logical statements. A statement is terminated by a semicolon
delimiter. The physical end−of−line marker in a PL/SQL program is ignored by the compiler, except to
terminate a single−line comment (initiated by the �� symbol).

1.4.1.7 Block structure

Each PL/SQL program is a block consisting of a standard set of elements, identified by keywords (see Figure
1.1). The block determines the scope of declared elements, and how exceptions are handled and propagated. A
block can be anonymous or named. Named blocks include functions, procedures, packages, and triggers. Here
is an example of an anonymous block:

DECLARE
 whoops NUMBER DEFAULT 99;
BEGIN
 −− Display a two−digit year number.
 DBMS_OUTPUT.PUT_LINE ('What century? ' || whoops);
END;

Here is a named block that performs the same action:

CREATE OR REPLACE PROCEDURE show_the_problem
IS
 whoops NUMBER DEFAULT 99;
BEGIN
 −− Display a two−digit year number.
 DBMS_OUTPUT.PUT_LINE ('What century? ' || whoops);
END show_the_problem;

Figure 1.1: The PL/SQL block structure

The following table describes the sections of a PL/SQL block:

Section Description

Header

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.4.1 The PL/SQL Character Set 8

Required for named blocks. Specifies the way the program is called by outer PL/SQL blocks.
Anonymous blocks do not have a header. They start with the DECLARE keyword if there is a
declaration section, or with the BEGIN keyword if there are no declarations.

DeclarationOptional; declares variables, cursors, TYPEs, and local programs that are used in the block's
execution and exception sections.

Execution Optional in package and type specifications; contains statements that are executed when the
block is run.

Exception Optional; describes error handling behavior for exceptions raised in the executable section.

1.3 Conventions 1.5 Variables and Program
Data

Copyright (c) 2000 O'Reilly & Associates. All rights reserved.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.4.1 The PL/SQL Character Set 9

Chapter 1
Oracle PL/SQL Language

Pocket Reference

1.5 Variables and Program Data

PL/SQL programs are normally used to manipulate database information. You commonly do this by declaring
variables and data structures in your programs, and then working with that PL/SQL−specific data.

A variable is a named instantiation of a data structure declared in a PL/SQL block (either locally or in a
package). Unless you declare a variable as a CONSTANT, its value can be changed at any time in your
program.

The following table describes several types of program data.

Type Description

Scalar Variables made up of a single value, such as a number, date, or Boolean.

Composite Variables made up of multiple values, such as a record or collection.

Reference Pointers to values.

LOB Variables containing Large OBject (LOB) locators.

1.5.1 Scalar Datatypes

Scalar datatypes divide into four families: number, character, date−time, and Boolean.

1.5.1.1 Numeric datatypes

Numeric datatypes are further divided into decimal, binary integer, and PLS_INTEGER storage types.

Decimal numeric datatypes store fixed and floating−point numbers of just about any size. They include
NUMBER, DEC, DECIMAL, NUMERIC, FLOAT, REAL, and DOUBLE PRECISION. The maximum
precision of a variable with type NUMBER is 38 digits, which yields a range of values from 1.0E−129
through 9.999E125. This range of numbers would include the mass of an electron over the mass of the
universe or the size of the universe in angstroms.

Variables of type NUMBER can be declared with precision and scale, as follows:

NUMBER(precision, scale)

Precision is the number of digits, and scale denotes the number of digits to the right (positive scale) or left
(negative scale) of the decimal point at which rounding occurs. Legal values for the scale range from −84 to
127. The following table shows examples of precision and scale.

Declaration Assigned ValueStored Value

NUMBER 6.02 6.02

NUMBER(4) 8675 8675

10

NUMBER(4) 8675309 Error

NUMBER(12,5) 3.14159265 3.14159

NUMBER(12,−5) 8675309 8700000

Binary integer numeric datatypes store whole numbers. They include BINARY_INTEGER, INTEGER, INT,
SMALLINT, NATURAL, NATURALN, POSITIVE, POSITIVEN, and SIGNTYPE. Binary integer datatypes
store signed integers in the range of −231 + 1 to 231 − 1. The subtypes include NATURAL (0 through 231) and
POSITIVE (1 through 231) together with the NOT NULL variations NATURALN and POSITIVEN.
SIGNTYPE is restricted to three values (−1, 0, 1).

PLS_INTEGER datatypes have the same range as the BINARY_INTEGER datatype, but use machine
arithmetic instead of library arithmetic, so are slightly faster for computation−heavy processing.

The following table lists the PL/SQL numeric datatypes with ANSI and IBM compatibility.

PL/SQL Datatype Compatibility Oracle RDNMS Datatype

DEC(prec,scale) ANSI NUMBER(prec,scale)

DECIMAL(prec,scale) IBM NUMBER(prec,scale)

DOUBLE PRECISION ANSI NUMBER

FLOAT(binary) ANSI, IBM NUMBER

INT ANSI NUMBER(38)

INTEGER ANSI, IBM NUMBER(38)

NUMERIC(prec,scale) ANSI NUMBER(prec,scale)

REAL ANSI NUMBER

SMALLINT ANSI, IBM NUMBER(38)

In the preceding table:

•
prec is the precision for the subtype.

•
scale is the scale of the subtype.

•
binary is the binary precision of the subtype.

1.5.1.2 Character datatypes

Character datatypes store alphanumeric text and are manipulated by character functions. As with the numeric
family, there are several subtypes in the character family, shown in the following table.

Family Description

CHAR Fixed−length alphanumeric strings. Valid sizes are 1 to 32767 bytes (which is larger
than the Oracle7 limit of 2000 and the Oracle8 limit of 4000).

VARCHAR2 Variable−length alphanumeric strings. Valid sizes are 1 to 32767 bytes (which is larger
than the Oracle7 limit of 2000 and the Oracle8 limit of 4000).

LONG Variable−length alphanumeric strings. Valid sizes are 1 to 32760 bytes. LONG is
included primarily for backward compatibility since longer strings can now be stored in

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.5.1 Scalar Datatypes 11

VARCHAR2 variables.

RAW Variable−length binary strings. Valid sizes are 1 to 32767 bytes (which is larger than
the Oracle7 and Oracle8 limit of 2000). RAW data do not undergo character set
conversion when selected from a remote database.

LONG RAW Variable−length binary strings. Valid sizes are 1 to 32760 bytes. LONG RAW is
included primarily for backward compatibility since longer strings can now be stored in
RAW variables.

ROWID Fixed−length binary data. Every row in a database has a physical address or ROWID.

An Oracle7 (restricted) ROWID has 3 parts in base 16 (hex):

BBBBBBBB.RRRR.FFFF.

An Oracle8 (extended) ROWID has 4 parts in base 64:

OOOOOOFFFBBBBBBRRR.

where:

OOOOOO is the object number.

FFFF (FFF) is the absolute (Oracle 7) or relative (Oracle8) file number.

BBBBBBBB (BBBBBB) is the block number within the file.

RRRR (RRR) is the row number within the block.

UROWID
(Oracle8i)

Universal ROWID. Variable−length hexadecimal string depicting a logical ROWID.
Valid sizes are up to 4000 bytes. Used to store the addresses of rows in index organized
tables or IBM DB2 tables via Gateway.

1.5.1.3 Date−time datatypes

DATE values are fixed−length, date−plus−time values. The DATE datatype can store dates from January 1,
4712 B.C. to December 31, 4712 A.D. Each DATE includes the century, year, month, day, hour, minute, and
second. Sub−second granularity is not supported via the DATE datatype. The time portion of a DATE
defaults to midnight (12:00:00 AM) if it is not included explicitly. The internal calendar follows the Papal
standard of Julian to Gregorian conversion in 1582 rather than the English standard (1752) found in many
operating systems.

1.5.1.4 Boolean datatype

The BOOLEAN datatype can store one of only three values: TRUE, FALSE, or NULL. BOOLEAN variables
are usually used in logical control structures such as IF...THEN or LOOP statements.

Following are truth tables showing the results of logical AND, OR, and NOT operations with PL/SQL's
three−value Boolean model.

AND TRUE FALSE NULL

TRUE TRUE FALSE NULL

FALSE FALSE FALSE FALSE

NULL NULL FALSE NULL

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.5.1 Scalar Datatypes 12

OR TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NULL

NULL TRUE NULL NULL

NOT (TRUE) NOT (FALSE) NOT (NULL)

FALSE TRUE NULL

1.5.2 NLS Character Datatypes

The standard ASCII character set does not support some languages, such as Chinese, Japanese, or Korean. To
support these multibyte character sets, PL/SQL8 supports two character sets, the database character set and
the national character set (NLS). There are two datatypes, NCHAR and NVARCHAR2, that can be used to
store data in the national character set.

NCHAR values are fixed−length NLS character data; the maximum length is 32767 bytes. For
variable−length character sets (like JA16SJIS), the length specification is in bytes; for fixed−length character
sets, it is in characters.

NVARCHAR2 values are variable−length NLS character data. The maximum length is 32767 bytes, and the
length specification follows the same fixed/variable−length rule as NCHAR values.

1.5.3 LOB Datatypes

PL/SQL8 supports a number of Large OBject (LOB) datatypes, which can store objects of up to four
gigabytes of data. Unlike the scalar datatypes, variables declared for LOBs use locators, or pointers to the
actual data. LOBs are manipulated in PL/SQL using the built−in package DBMS_LOB.

BFILE
File locators pointing to read−only large binary objects in operating system files. With BFILEs, the
large objects are outside the database.

BLOB
LOB locators that point to large binary objects inside the database.

CLOB
LOB locators that point to large "character" (alphanumeric) objects inside the database.

NCLOB
LOB locators that point to large national character set objects inside the database.

1.5.4 NULLs in PL/SQL

PL/SQL represents unknown values as NULL values. Since a NULL is unknown, a NULL is never equal or
not equal to anything (including another NULL value). Additionally, most functions return a NULL when
passed a NULL argument −− the notable exceptions are NVL, CONCAT, and REPLACE. You cannot check
for equality or inequality to NULL; therefore, you must use the IS NULL or IS NOT NULL syntax to check
for NULL values.

Here is an example of the IS NULL syntax to check the value of a variable:

BEGIN

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.5.2 NLS Character Datatypes 13

 IF myvar IS NULL
 THEN
 ...

1.5.5 Declaring Variables

Before you can use a variable, you must first declare it in the declaration section of your PL/SQL block or in a
package as a global. When you declare a variable, PL/SQL allocates memory for the variable's value and
names the storage location so that the value can be retrieved and changed. The syntax for a variable
declaration is:

variable_name datatype [CONSTANT] [NOT NULL]
 [:= | DEFAULT initial_value]

1.5.5.1 Constrained declarations

The datatype in a declaration can be constrained or unconstrained. Constrained datatypes have a size, scale, or
precision limit that is less than the unconstrained datatype. For example:

total_sales NUMBER(15,2); −− Constrained.
emp_id VARCHAR2(9); −− Constrained.
company_number NUMBER; −− Unconstrained.
book_title VARCHAR2; −− Not valid.

Constrained declarations require less memory than unconstrained declarations. Not all datatypes can be
specified as unconstrained. You cannot, for example, declare a variable to be of type VARCHAR2. You must
always specify the maximum size of a variable−length string.

1.5.5.2 Constants

The CONSTANT keyword in a declaration requires an initial value and does not allow that value to be
changed. For example:

min_order_qty NUMBER(1) CONSTANT := 5;

1.5.5.3 Default values

Whenever you declare a variable, it is assigned a default value of NULL. Initializing all variables is
distinctive to PL/SQL; in this way, PL/SQL differs from languages such as C and Ada. If you want to
initialize a variable to a value other than NULL, you do so in the declaration with either the assignment
operator (:=) or the DEFAULT keyword:

counter BINARY_INTEGER := 0;
priority VARCHAR2(8) DEFAULT 'LOW';

A NOT NULL constraint can be appended to the variable's datatype declaration to indicate that NULL is not a
valid value. If you add the NOT NULL constraint, you must explicitly assign an initial value for that variable.

1.5.6 Anchored Declarations

Use the %TYPE attribute to anchor the datatype of a scalar variable to either another variable or to a column
in a database table or view. Use %ROWTYPE to anchor a record's declaration to a cursor or table (see the
Section 1.11, "Records in PL/SQL" section for more detail on the %ROWTYPE attribute).

The following block shows several variations of anchored declarations:

DECLARE

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.5.5 Declaring Variables 14

tot_sales NUMBER(20,2);
 −− Anchor to a PL/SQL variable.
 monthly_sales tot_sales%TYPE;

 −− Anchor to a database column.
 v_ename employee.last_name%TYPE;

 CURSOR mycur IS
 SELECT * FROM employee;

 −− Anchor to a cursor.
 myrec mycur%ROWTYPE;

The NOT NULL clause on a variable declaration (but not on a database column definition) follows the
%TYPE anchoring and requires anchored declarations to have a default in their declaration. The default value
for an anchored declaration can be different from that for the base declaration:

tot_sales NUMBER(20,2) NOT NULL DEFAULT 0;
monthly_sales tot_sales%TYPE DEFAULT 10;

1.5.7 Programmer−Defined Subtypes

PL/SQL allows you to define unconstrained scalar subtypes. An unconstrained subtype provides an alias to
the original underlying datatype, for example:

CREATE OR REPLACE PACKAGE std_types
IS
 −− Declare standard types as globals.
 TYPE dollar_amt_t IS NUMBER;
END std_types;

CREATE OR REPLACE PROCEDURE process_money
IS
 −− Use the global type declared above.
 credit std_types.dollar_amt_t;
 ...

A constrained subtype limits or constrains the new datatype to a subset of the original datatype. For example,
POSITIVE is a constrained subtype of BINARY_INTEGER. The declaration for POSITIVE in the
STANDARD package is:

SUBTYPE POSITIVE IS BINARY_INTEGER RANGE 1..2147483647;

You cannot define constrained subtypes in your own programs; this capability is reserved for Oracle itself.
You can, however, achieve the same effect as a constrained subtype by using %TYPE. Here is a rewriting of
the previous subtype that enforces a constraint on the size of dollar amount variables:

PACKAGE std_types
IS
 v_dollar NUMBER (10, 2);

 TYPE dollar_amt_t IS v_dollar%TYPE;
END;

1.4 PL/SQL Language
Fundamentals

1.6 Conditional and
Sequential Control

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.5.7 Programmer−Defined Subtypes 15

Copyright (c) 2000 O'Reilly & Associates. All rights reserved.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.5.7 Programmer−Defined Subtypes 16

Chapter 1
Oracle PL/SQL Language

Pocket Reference

1.6 Conditional and Sequential Control

PL/SQL includes conditional (IF) structures as well as sequential control (GOTO, NULL) constructs.

1.6.1 Conditional Control Statements

1.6.1.1 IF−THEN combination

IF condition THEN
 executable statement(s)
END IF;

For example:

IF caller_type = 'VIP' THEN
 generate_response('GOLD');
END IF;

1.6.1.2 IF−THEN−ELSE combination

IF condition THEN
 TRUE sequence_of_executable_statement(s)
ELSE
 FALSE/NULL sequence_of_executable_statement(s)
END IF;

For example:

IF caller_type = 'VIP' THEN
 generate_response('GOLD');
ELSE
 generate_response('BRONZE');
END IF;

1.6.1.3 IF−THEN−ELSIF combination

IF condition−1 THEN
 statements−1
ELSIF condition−N THEN
 statements−N
[ELSE
 else statements]
END IF;

For example:

IF caller_type = 'VIP' THEN
 generate_response('GOLD');
ELSIF priority_client THEN
 generate_response('SILVER');

17

ELSE
 generate_response('BRONZE');
END IF;

1.6.2 Sequential Control Statements

The GOTO statement performs unconditional branching to a named label. It should be used rarely. At least
one executable statement must follow the label (the NULL statement can be this necessary executable
statement). The format of a GOTO statement is:

GOTO label_name;
The format of the label is:

<<label_name>>
There are a number of scope restrictions on where a GOTO can branch control. A GOTO:

•
Can branch out of an IF statement, LOOP, or sub−block

•
Cannot branch into an IF statement, LOOP, or sub−block

•
Cannot branch from one section of an IF statement to another (from the IF/THEN section to the ELSE
section is illegal)

•
Cannot branch into or out of a subprogram

•
Cannot branch from the exception section to the executable section of a PL/SQL block

•
Cannot branch from the executable section to the exception section of a PL/SQL block, although a
RAISE does this

The NULL statement is an executable statement that does nothing. It is useful when an executable statement
must follow a GOTO label or to aid readability in an IF−THEN−ELSE structure. For example:

IF :report.selection = 'DETAIL' THEN
 exec_detail_report;
ELSE
 NULL;
END IF;

1.5 Variables and Program
Data

1.7 Loops

Copyright (c) 2000 O'Reilly & Associates. All rights reserved.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.6.2 Sequential Control Statements 18

Chapter 1
Oracle PL/SQL Language

Pocket Reference

1.7 Loops

The LOOP construct allows you to repeatedly execute a sequence of statements. There are three kind of loops:
simple, WHILE, and FOR.

Use the EXIT statement to break out of LOOP and pass control to the statement following the END LOOP.

1.7.1 The Simple Loop

The syntax for a simple loop is:

LOOP
 executable_statement(s)
END LOOP;

The simple loop should contain an EXIT or EXIT WHEN statement so as not to execute infinitely. Use the
simple loop when you want the body of the loop to execute at least once.

For example:

LOOP
 FETCH company_cur INTO company_rec;
 EXIT WHEN company_cur%ROWCOUNT > 5 OR
 company_cur%NOTFOUND;
 process_company(company_cur);
END LOOP;

1.7.2 The Numeric FOR Loop

The syntax for a numeric FOR loop is:

FOR loop_index IN [REVERSE] lowest_number..
 highest_number
LOOP
 executable_statement(s)
END LOOP;

The PL/SQL runtime engine automatically declares the loop index a PLS_INTEGER variable; never declare a
variable with that name yourself. The lowest_number and highest_number ranges can be variables, but are
evaluated only once −− on initial entry into the loop. The REVERSE keyword causes PL/SQL to start with
the highest_number and decrement down to the lowest_number. For example:

BEGIN
 DBMS_OUTPUT.PUT_LINE('Beginning Forward');
 FOR counter IN 1 .. 4
 LOOP
 DBMS_OUTPUT.PUT_LINE('counter='||counter);
 END LOOP;

19

 DBMS_OUTPUT.PUT_LINE('Beginning REVERSE');
 FOR counter IN REVERSE 1 .. 4
 LOOP
 DBMS_OUTPUT.PUT_LINE('counter='||counter);
 END LOOP;
END;

1.7.3 The Cursor FOR Loop

The syntax for a cursor FOR loop is:

FOR record_index IN [cursor_name | (SELECT statement)]
LOOP
 executable_statement(s)
END LOOP;

The PL/SQL runtime engine automatically declares the loop index a record of cursor_name%ROWTYPE;
never declare a variable with that name yourself.

The cursor FOR loop automatically opens the cursor, fetches all rows identified by the cursor, and then closes
the cursor. You can embed the SELECT statement directly in the cursor FOR loop. For example:

FOR emp_rec IN emp_cur
LOOP
 IF emp_rec.title = 'Oracle Programmer'
 THEN
 give_raise(emp_rec.emp_id,30)
 END IF;
END LOOP;

1.7.4 The WHILE Loop

The syntax for a WHILE loop is:

WHILE condition
LOOP
 executable_statement(s)
END LOOP;

Use the WHILE loop when, depending on the entry condition, you don't want the loop body to execute even
once:

WHILE NOT end_of_analysis
LOOP
 perform_analysis;
 get_next_record;
 IF analysis_cursor%NOTFOUND AND next_step IS NULL
 THEN
 end_of_analysis := TRUE;
 END IF;
END LOOP;

1.7.5 The REPEAT UNTIL Loop Emulation

PL/SQL does not directly support a REPEAT UNTIL construct, but a modified simple loop can emulate one.
The syntax for this emulated REPEAT UNTIL loop is:

LOOP
 executable_statement(s)
 EXIT WHEN Boolean_condition;
END LOOP;

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.7.3 The Cursor FOR Loop 20

Use the emulated REPEAT UNTIL loop when executing iterations indefinitely before conditionally
terminating the loop.

1.7.6 The EXIT Statement

The syntax for the EXIT statement is:

EXIT [WHEN Boolean_condition];

If you do not include a WHEN clause in the EXIT statement, it will terminate the loop unconditionally.
Otherwise, the loop terminates only if Boolean_condition evaluates to TRUE. The EXIT statement is optional
and can appear anywhere in the loop.

1.7.7 Loop Labels

Loops can be optionally labeled to improve readability and execution control. The label must appear
immediately in front of the statement that initiates the loop.

The following example demonstrates the use of loop labels to qualify variables within a loop and also to
terminate nested and outer loops:

<<year_loop>>
FOR yearind IN 1 .. 20
LOOP
 <<month_loop>>
 LOOP
 ...
 IF year_loop.yearind > 10
 THEN
 EXIT year_loop;
 END IF;
 END LOOP month_loop;
END LOOP year_loop;

1.6 Conditional and
Sequential Control

1.8 Database Interaction
and Cursors

Copyright (c) 2000 O'Reilly & Associates. All rights reserved.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.7.6 The EXIT Statement 21

Chapter 1
Oracle PL/SQL Language

Pocket Reference

1.8 Database Interaction and Cursors

PL/SQL is tightly integrated with the underlying SQL layer of the Oracle database. You can execute SQL
statements (UPDATE, INSERT, DELETE, and SELECT) directly in PL/SQL programs. You can also execute
Data Definition Language (DDL) statements through the use of dynamic SQL (DBMS_SQL in Oracle7 and
Oracle8, native dynamic SQL in Oracle8i). In addition, you can manage transactions with COMMIT,
ROLLBACK, and other Data Control Language (DCL) statements.

1.8.1 Transaction Management

The Oracle RDBMS provides a transaction model based on a unit of work. The PL/SQL language supports
most, but not all, of the database model for transactions (you cannot, for example, ROLLBACK FORCE).
Transactions begin with the first change to data and end with either a COMMIT or ROLLBACK.
Transactions are independent of PL/SQL blocks. Transactions can span multiple PL/SQL blocks, or there can
be multiple transactions in a single PL/SQL block. The PL/SQL supported transaction statements are:
COMMIT, ROLLBACK, SAVEPOINT, SET TRANSACTION, and LOCK TABLE. Each is detailed here:

1.8.1.1 COMMIT

COMMIT [WORK] [COMMENT text];

COMMIT makes the database changes permanent and visible to other database sessions. The WORK
keyword is optional and only aids readability −− it is rarely used. The COMMENT text is optional and can
be up to 50 characters in length. It is only germane to in−doubt distributed (two−phase commit) transactions.
The database statement COMMIT FORCE for distributed transactions is not supported in PL/SQL.

1.8.1.2 ROLLBACK

ROLLBACK [WORK] [TO [SAVEPOINT] savepoint_name];

ROLLBACK undoes the changes made in the current transaction either to the beginning of the transaction or
to a savepoint. A savepoint is a named processing point in a transaction, created with the SAVEPOINT
statement. Rolling back to a savepoint is a partial rollback of a transaction, wiping out all changes (and
savepoints) that occurred later than the named savepoint.

1.8.1.3 SAVEPOINT

SAVEPOINT savepoint_name;

SAVEPOINT establishes a savepoint in the current transaction. savepoint_name is an undeclared
identifier −− you do not declare it. More than one savepoint can be established within a transaction. If you
reuse a savepoint name, that savepoint is moved to the later position and you will not be able to rollback to the
initial savepoint position.

22

1.8.1.4 SET TRANSACTION

SET TRANSACTION READ ONLY;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET TRANSACTION USE ROLLBACK SEGMENT rbseg_name;

SET TRANSACTION has three transaction control functions:

READ ONLY
Marks the beginning of a read−only transaction. This indicates to the RDBMS that a read−consistent
view of the database is to be enforced for the transaction (the default is for the statement). This
read−consistent view means that only changes committed before the transaction begins are visible for
the duration of the transaction. The transaction is ended with either a COMMIT or ROLLBACK.
Only LOCK TABLE, SELECT, SELECT INTO, OPEN, FETCH, CLOSE, COMMIT, or
ROLLBACK statements are permitted during a read−only transaction. Issuing other statements, such
as INSERT or UPDATE, in a read−only transaction results in an ORA−1456 error.

ISOLATION LEVEL SERIALIZABLE
Similar to a READ ONLY transaction in that transaction−level read consistency is enforced instead of
the default statement−level read consistency. Serializable transactions do allow changes to data,
however.

USE ROLLBACK SEGMENT
Tells the RDBMS to use the specifically named rollback segment rbseg_name. This statement is
useful when only one rollback segment is large and a program knows that it needs to use the large
rollback segment, such as during a month−end close operation. For example, if we know our large
rollback segment is named rbs_large, we can tell the database to use it by issuing the following
statement before our first change to data:

SET TRANSACTION USE ROLLBACK SEGMENT rbs_large;

1.8.1.5 LOCK TABLE

LOCK TABLE table_list IN lock_mode MODE [NOWAIT];

This statement bypasses the implicit database row−level locks by explicitly locking one or more tables in the
specified mode. The table_list is a comma−delimited list of tables. The lock_mode is one of ROW SHARE,
ROW EXCLUSIVE, SHARE UPDATE, SHARE, SHARE ROW EXCLUSIVE, or EXCLUSIVE. The
NOWAIT keyword specifies that the RDBMS should not wait for a lock to be released. If there is a lock when
NOWAIT is specified, the RDBMS raises the exception "ORA−00054: resource busy and acquire with
NOWAIT specified". The default RDBMS locking behavior is to wait indefinitely.

1.8.2 Native Dynamic SQL (Oracle8i)

Native dynamic SQL introduces a new PL/SQL statement, EXECUTE IMMEDIATE, and new semantics for
the OPEN FOR, FETCH, and CLOSE statement family. The former applies to single−row queries and DDL,
while the latter supports dynamic multi−row queries. The syntax for these statements is:

EXECUTE IMMEDIATE SQL_statement_string
[INTO { define_variable_list | record |
 object_variable }]
[USING [IN | OUT | IN OUT] bind_argument_list];

OPEN cursor_variable FOR
 SELECT_statement_string;

FETCH cursor_variable INTO {define_variable_list

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.8.1 Transaction Management 23

 | record | object_variable};
CLOSE cursor_variable;

The EXECUTE IMMEDIATE statement parses and executes the SQL statement in a single step. It can be
used for any SQL statement except a multi−row query. define_variable_list is a comma−delimited list of
variable names; the bind_argument_list is a comma−delimited list of bind arguments. The parameter mode is
optional and defaults to IN. Do not place a trailing semicolon in the SQL_statement_string.

This is the statement that can be used to execute DDL without the DBMS_SQL package. For example:

EXECUTE IMMEDIATE 'TRUNCATE TABLE foo';
EXECUTE IMMEDIATE 'GRANT SELECT ON '|| tabname_v ||
 ' TO ' || grantee_list;

The OPEN FOR statement assigns a multi−row query to a weakly typed cursor variable. The rows are then
FETCHed and the cursor CLOSEd.

DECLARE
 TYPE cv_typ IS REF CURSOR;
 cv cv_typ;
 laccount_no NUMBER;
 lbalance NUMBER;
BEGIN
 OPEN cv FOR
 'SELECT account_no, balance
 FROM accounts
 WHERE balance < 500';
 LOOP
 FETCH cv INTO laccount_no, lbalance;
 EXIT WHEN cv%NOTFOUND;
 −− Process the row.
 END LOOP;
 CLOSE cv;
END;

1.8.3 Autonomous Transactions (Oracle8i)

Autonomous transactions execute within a block of code as separate transactions from the outer (main)
transaction. Changes can be committed or rolled back in an autonomous transaction without committing or
rolling back the main transaction. Changes committed in an autonomous transaction are visible to the main
transaction, even though they occur after the start of the main transaction. Changes committed in an
autonomous transaction are visible to other transactions as well. The RDBMS suspends the main transaction
while the autonomous transaction executes:

PROCEDURE main IS
BEGIN
 UPDATE ...−− Main transaction begins here.
 DELETE ...
 at_proc; −− Call the autonomous transaction.
 SELECT ...
 INSERT ...
 COMMIT; −− Main transaction ends here.
END;

PROCEDURE at_proc IS
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN −− Main transaction suspends here.
 SELECT ...
 INSERT ...−− Autonomous transaction begins here.
 UPDATE ...
 DELETE ...
 COMMIT; −− Autonomous transaction ends here.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.8.3 Autonomous Transactions (Oracle8i) 24

END; −− Main transaction resumes here.

So, changes made in the main transaction are not visible to the autonomous transaction and if the main
transaction holds any locks that the autonomous transaction waits for, a deadlock occurs. Using the NOWAIT
option on UPDATE statements in autonomous transactions can help to minimize this kind of deadlock.
Functions and procedures (local program, standalone, or packaged), database triggers, top−level anonymous
PL/SQL blocks, and object methods can be declared autonomous via the compiler directive PRAGMA
AUTONOMOUS_TRANSACTION.

In the example below, the COMMIT does not make permanent pending changes in the calling program. Any
rollback in the calling program would also have no effect on the changes committed in this autonomous
procedure:

CREATE OR REPLACE PROCEDURE add_company (
 name_in company.name%TYPE
)
IS
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 determine_credit(name);
 create_account(name);
 ...
 COMMIT; −− Only commit this procedure's changes.
END add_company;

1.7 Loops 1.9 Cursors in PL/SQL

Copyright (c) 2000 O'Reilly & Associates. All rights reserved.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.8.3 Autonomous Transactions (Oracle8i) 25

Chapter 1
Oracle PL/SQL Language

Pocket Reference

1.9 Cursors in PL/SQL

Every SQL statement executed by the RDBMS has a private SQL area that contains information about the
SQL statement and the set of data returned. In PL/SQL, a cursor is a name assigned to a specific private SQL
area for a specific SQL statement. There can be either static cursors, whose SQL statement is determined at
compile time, or dynamic cursors, whose SQL statement is determined at runtime. Static cursors are covered
in greater detail in this section. Dynamic cursors in PL/SQL are implemented via the built−in package
DBMS_SQL. See the book Oracle Built−in Packages and the corresponding Oracle PL/SQL Built−ins
Pocket Reference, both from O'Reilly & Associates, for full coverage on DBMS_SQL and the other built−in
packages.

1.9.1 Explicit Cursors

Explicit cursors are SELECT statements that are DECLAREd explicitly in the declaration section of the
current block or in a package specification. Use OPEN, FETCH, and CLOSE in the execution or exception
sections of your programs.

1.9.1.1 Declaring explicit cursors

To use an explicit cursor, you must first declare it in the declaration section of a block or package. There are
three types of explicit cursor declarations:

•
A cursor without parameters, such as:

 CURSOR company_cur
 IS
 SELECT company_id FROM company;

•
A cursor that accepts arguments through a parameter list:

 CURSOR company_cur (id_in IN NUMBER) IS
 SELECT name FROM company
 WHERE company_id = id_in;

•
A cursor header that contains a RETURN clause in place of the SELECT statement:

 CURSOR company_cur (id_in IN NUMBER)
 RETURN company%ROWTYPE IS
 SELECT * FROM company;

This technique can be used in packages to hide the implementation of the cursor in the package body. See the
Section 1.14" section for more information.

26

1.9.1.2 Opening explicit cursors

To open a cursor, use the following syntax:

OPEN cursor_name [(argument [,argument ...])];

where cursor_name is the name of the cursor as declared in the declaration section. The arguments are
required if the definition of the cursor contains a parameter list.

You must open an explicit cursor before you can fetch rows from that cursor. When the cursor is opened, the
processing includes the PARSE, BIND, OPEN, and EXECUTE statements. This OPEN processing includes:
determining an execution plan, associating host variables and cursor parameters with the placeholders in the
SQL statement, determining the result set, and, finally, setting the current row pointer to the first row in the
result set.

When using a cursor FOR loop, the OPEN is implicit in the FOR statement. If you try to open a cursor that is
already open, PL/SQL will raise an "ORA−06511: PL/SQL: cursor already open" exception.

1.9.1.3 Fetching from explicit cursors

The FETCH statement places the contents of the current row into local variables. To retrieve all rows in a
result set, each row needs to be fetched. The syntax for a FETCH statement is:

FETCH cursor_name INTO record_or_variable_list;

where cursor_name is the name of the cursor as declared and opened.

1.9.1.4 Closing explicit cursors

The syntax of the CLOSE statement is:

CLOSE cursor_name;

where cursor_name is the name of the cursor declared and opened.

After all rows have been fetched, a cursor needs to be closed. Closing a cursor releases the private SQL area
used by the cursor, freeing the memory used by that cursor.

If you declare a cursor in a local anonymous, procedure, or function block, that cursor will automatically close
when the block terminates. Package−based cursors must be closed explicitly, or they stay open for the
duration of your session. Closing a cursor that is not open raises an INVALID CURSOR exception.

1.9.1.5 Explicit cursor attributes

There are four attributes associated with cursors: ISOPEN, FOUND, NOTFOUND, and ROWCOUNT. These
attributes can be accessed with the % delimiter to obtain information about the state of the cursor. The syntax
for a cursor attribute is:

cursor_name%attribute

where cursor_name is the name of the explicit cursor.

The behaviors of the explicit cursor attributes are described in the following table.

Attribute Description

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.9.1 Explicit Cursors 27

%ISOPEN TRUE if cursor is open.

FALSE if cursor is not open.

%FOUND INVALID_CURSOR is raised if cursor has not been OPENed.

NULL before the first fetch.

TRUE if record was fetched successfully.

FALSE if no row was returned.

INVALID_CURSOR if cursor has been CLOSEd.

%NOTFOUND INVALID_CURSOR is raised if cursor has not been OPENed.

NULL before the first fetch.

FALSE if record was fetched successfully.

TRUE if no row was returned.

INVALID_CURSOR if cursor has been CLOSEd.

%ROWCOUNT INVALID_CURSOR is raised if cursor has not been OPENed.

The number of rows fetched from the cursor.

INVALID_CURSOR if cursor has been CLOSEd.

Frequently a cursor attribute is checked as part of a WHILE loop that fetches rows from a cursor:

DECLARE
 caller_rec caller_pkg.caller_cur%ROWTYPE;
BEGIN
 OPEN caller_pkg.caller_cur;
 LOOP
 FETCH caller_pkg.caller_cur into caller_rec;
 EXIT WHEN caller_pkg.caller_cur%NOTFOUND
 OR
 caller_pkg.caller_cur%ROWCOUNT > 10;

 UPDATE call
 SET caller_id = caller_rec.caller_id
 WHERE call_timestamp < SYSDATE;
 END LOOP;
 CLOSE caller_pkg.caller_cur;
END;

1.9.2 Implicit Cursors

Whenever a SQL statement is directly in the execution or exception section of a PL/SQL block, you are
working with implicit cursors. These statements include INSERT, UPDATE, DELETE, and SELECT INTO
statements. Unlike explicit cursors, implicit cursors do not need to be declared, OPENed, FETCHed, or
CLOSEd.

SELECT statements handle the %FOUND and %NOTFOUND attributes differently from explicit cursors.
When an implicit SELECT statement does not return any rows, PL/SQL immediately raises the
NO_DATA_FOUND exception and control passes to the exception section. When an implicit SELECT
returns more than one row, PL/SQL immediately raises the TOO_MANY_ROWS exception and control

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.9.2 Implicit Cursors 28

passes to the exception section.

Implicit cursor attributes are referenced via the SQL cursor. For example:

BEGIN
 UPDATE activity SET last_accessed := SYSDATE
 WHERE UID = user_id;

 IF SQL%NOTFOUND THEN
 INSERT INTO activity_log (uid,last_accessed)
 VALUES (user_id,SYSDATE);
 END IF
END;

SQL Attributes Description

%ISOPEN Always FALSE since the cursor is opened implicitly and closed
immediately after the statement is executed.

%FOUND NULL before the statement.

TRUE if one or more rows were inserted, updated, or deleted or if only
one row was selected.

FALSE if no row was selected, updated, inserted, or deleted.

%NOTFOUND NULL before the statement.

TRUE if no row was selected, updated, inserted, or deleted.

FALSE if one or more rows were inserted, updated, or deleted.

%ROWCOUNT The number of rows affected by the cursor.

%BULK_ROWCOUNT
(Oracle8i)

A pseudo index−by table containing the numbers of rows affected by the
statements executed in bulk bind operations. See the "Bulk Binds
(Oracle8i)" section for more information on %BULK_ROWCOUNT.

Use the RETURNING clause in INSERT, UPDATE, and DELETE statements to obtain data modified by the
associated DML statement. This clause allows you to avoid an additional SELECT statement to query the
results of the DML statement. For example:

BEGIN
 UPDATE activity SET last_accessed := SYSDATE
 WHERE UID = user_id
 RETURNING last_accessed, cost_center
 INTO timestamp, chargeback_acct;

1.9.2.1 The SELECT FOR UPDATE clause

By default, the Oracle RDBMS locks rows as they are changed. To lock all rows in a result set, use the FOR
UPDATE clause in your SELECT statement when you OPEN the cursor, instead of when you change the
data. Using the FOR UPDATE clause does not require you to actually make changes to the data; it only locks
the rows when opening the cursor. These locks are released on the next COMMIT or ROLLBACK. As
always, these row locks do not affect other SELECT statements unless they, too, are FOR UPDATE. The
FOR UPDATE clause is appended to the end of the SELECT statement and has the following syntax:

SELECT ...
 FROM ...
 FOR UPDATE [OF column_reference] [NOWAIT];

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.9.2 Implicit Cursors 29

where column_reference is a comma−delimited list of columns that appear in the SELECT clause. The
NOWAIT keyword tells the RDBMS to not wait for other blocking locks to be released. The default is to wait
forever.

In the following example, only columns from the inventory (pet) table are referenced FOR UPDATE, so no
rows in the dog_breeds (dog) table are locked when hounds_in_stock_cur is opened:

DECLARE
 CURSOR hounds_in_stock_cur IS
 SELECT pet.stock_no, pet.breeder, dog.size
 FROM dog_breeds dog ,inventory pet
 WHERE dog.breed = pet.breed
 AND dog.class = 'HOUND'
 FOR UPDATE OF pet.stock_no, pet.breeder;
BEGIN

1.9.2.2 The WHERE CURRENT OF clause

UPDATE and DELETE statements can use a WHERE CURRENT OF clause if they reference a cursor
declared FOR UPDATE. This syntax indicates that the UPDATE or DELETE should modify the current row
identified by the FOR UPDATE cursor. The syntax is:

[UPDATE | DELETE] ...
 WHERE CURRENT OF cursor_name;

By using WHERE CURRENT OF, you do not have to repeat the WHERE clause in the SELECT statement.
For example:

DECLARE
 CURSOR wip_cur IS
 SELECT acct_no, enter_date FROM wip
 WHERE enter_date < SYSDATE −7
 FOR UPDATE;
BEGIN
 FOR wip_rec IN wip_cur
 LOOP
 INSERT INTO acct_log (acct_no, order_date)
 VALUES (wip_rec.acct_no, wip_rec.enter_
 date);
 DELETE FROM wip
 WHERE CURRENT OF wip_cur;
 END LOOP;
END;

1.9.3 Cursor Variables

A cursor variable is a data structure that points to a cursor object, which in turn points to the cursor's result set.
You can use cursor variables to more easily retrieve rows in a result set from client and server programs. You
can also use cursor variables to hide minor variations in queries.

The syntax for a REF_CURSOR type is:

TYPE ref_cursor_name IS REF CURSOR
 [RETURN record_type];

If you do not include a RETURN clause, then you are declaring a weak REF CURSOR. Cursor variables
declared from weak REF CURSORs can be associated with any query at runtime. A REF CURSOR
declaration with a RETURN clause defines a "strong" REF CURSOR. A cursor variable based on a strong
REF CURSOR can be associated with queries whose result sets match the number and datatype of the record
structure after the RETURN at runtime.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.9.2 Implicit Cursors 30

To use cursor variables, you must first create a REF_CURSOR type, then declare a cursor variable based on
that type.

The following example shows the use of both weak and strong REF CURSORs:

DECLARE
 −− Create a cursor type based on the companies
 table.
 TYPE company_curtype IS REF CURSOR
 RETURN companies%ROWTYPE;

 −− Create the variable based on the REF CURSOR.
 company_cur company_curtype;

 −− And now the weak, general approach.
 TYPE any_curtype IS REF CURSOR;
 generic_curvar any_curtype;

The syntax to OPEN a cursor variable is:

OPEN cursor_name FOR select_statement;

FETCH and CLOSE a cursor variable using the same syntax as for explicit cursors. There are a number of
restrictions on cursor variables:

•
Cursor variables cannot be declared in a package since they do not have a persistent state.

•
You cannot use the FOR UPDATE clause with cursor variables.

•
You cannot assign NULLs to a cursor variable nor use comparison operators to test for equality,
inequality, or nullity.

•
Neither database columns nor collections can store cursor variables.

•
You cannot use RPCs to pass cursor variables from one server to another.

•
Cursor variables cannot be used with the dynamic SQL built−in package DBMS_SQL.

1.8 Database Interaction
and Cursors

1.10 Exception Handling

Copyright (c) 2000 O'Reilly & Associates. All rights reserved.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.9.2 Implicit Cursors 31

Chapter 1
Oracle PL/SQL Language

Pocket Reference

1.10 Exception Handling

PL/SQL allows developers to raise and handle errors (exceptions) in a very flexible and powerful way. Each
PL/SQL block can have its own exception section, in which exceptions can be trapped and handled (resolved
or passed on to the enclosing block).

When an exception occurs (is raised) in a PL/SQL block, its execution section immediately terminates.
Control is passed to the exception section.

Every exception in PL/SQL has an error number and error message; some exceptions also have names.

1.10.1 Declaring Exceptions

Some exceptions (see the following table) have been pre−defined by Oracle in the STANDARD package.
You can also declare your own exceptions as follows:

DECLARE
 exception_name EXCEPTION;

Error Named Exception

ORA−00001 DUP_VAL_ON_INDEX

ORA−00051 TIMEOUT_ON_RESOURCE

ORA−01001 INVALID_CURSOR

ORA−01012 NOT_LOGGED_ON

ORA−01017 LOGIN_DENIED

ORA−01403 NO_DATA_FOUND

ORA−01410 SYS_INVALID_ROWID

ORA−01422 TOO_MANY_ROWS

ORA−01476 ZERO_DIVIDE

ORA−01722 INVALID_NUMBER

ORA−06500 STORAGE_ERROR

ORA−06501 PROGRAM_ERROR

ORA−06502 VALUE_ERROR

ORA−06504 ROWTYPE_MISMATCH

ORA−06511 CURSOR_ALREADY_OPEN

ORA−06530 ACCESS_INTO_NULL

ORA−06531 COLLECTION_IS_NULL

32

ORA−06532 SUBSCRIPT_OUTSIDE_LIMIT

ORA−06533 SUBSCRIPT_BEYOND_COUNT

An exception can be declared only once in a block, but nested blocks can declare an exception with the same
name as an outer block. If this multiple declaration occurs, scope takes precedence over name when handling
the exception. The inner block's declaration takes precedence over a global declaration.

When you declare your own exception, you must RAISE it explicitly. All declared exceptions have an error
code of 1 and the error message "User−defined exception," unless you use the EXCEPTION_INIT pragma.

You can associate an error number with a declared exception with the PRAGMA EXCEPTION_INIT
statement:

DECLARE
 exception_name EXCEPTION;
 PRAGMA EXCEPTION_INIT (exception_name,
 error_number);

where error_number is a literal value (variable references are not allowed). This number can be an Oracle
error, such as −1855, or an error in the user−definable −20000 to −20999 range.

1.10.2 Raising Exceptions

An exception can be raised in three ways:

•
By the PL/SQL runtime engine

•
By an explicit RAISE statement in your code

•
By a call to the built−in function RAISE_APPLICATION_ERROR

The syntax for the RAISE statement is:

RAISE exception_name;

where exception_name is the name of an exception that you have declared, or that is declared in the
STANDARD package.

If you use the RAISE statement inside an exception handler, you can leave off an exception name to re−raise
the current exception:

RAISE;

This syntax is not valid outside the exception section.

The RAISE_APPLICATION_ERROR built−in has the following header:

RAISE_APPLICATION_ERROR (
 num BINARY_INTEGER,
 msg VARCHAR2,
 keeperrorstack BOOLEAN DEFAULT FALSE);

where num is the error number (an integer between −20999 and −20000), msg is the associated error message,
and keeperrorstack controls the contents of the error stack.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.10.2 Raising Exceptions 33

1.10.3 Scope

The scope of an exception section is that portion of the code that is "covered" by the exception section. An
exception handler will only handle or attempt to handle exceptions raised in the executable section of the
PL/SQL block. Exceptions raised in the declaration or exception sections are automatically passed to the outer
block. Any line or set of PL/SQL code can be placed inside its own block and given its own exception section.
This allows you to limit the propagation of an exception.

1.10.4 Propagation

Exceptions raised in a PL/SQL block propagate to an outer block if they are unhandled or re−raised in the
exception section. When an exception occurs, PL/SQL looks for an exception handler that checks for the
exception (or is the WHEN OTHERS clause) in the current block. If a match is not found, then PL/SQL
propagates the exception to the enclosing block or calling program. This propagation continues until the
exception is handled or propagated out of the outermost block, back to the calling program. In this case, the
exception is "unhandled" and (1) stops the calling program, and (2) causes an automatic rollback of any
outstanding transactions.

Once an exception is handled, it will not propagate upward. If you want to trap an exception, display a
meaningful error message, and have the exception propagate upward as an error, you must re−raise the
exception. The RAISE statement can re−raise the current exception or raise a new exception:

PROCEDURE delete_dept(deptno_in IN NUMBER)
DECLARE
 still_have_employees EXCEPTION
 PRAGMA EXCEPTION_INIT(still_have_employees.
 −2292)
BEGIN
DELETE FROM dept
WHERE deptno = deptno_in;
EXCEPTION
 WHEN still_have_employees
 THEN
 DBMS_OUTPUT.PUT_LINE
('Please delete employees in dept first');
ROLLBACK;
RAISE; /* Re−raise the current exception. */
END;

1.10.4.1 The WHEN OTHERS clause

EXCEPTION
 WHEN OTHERS
 THEN
 ...

Use the WHEN OTHERS clause in the exception handler as a catch−all to trap any exceptions that are not
handled by specific WHEN clauses in the exception section. If present, this clause must be the last exception
handler in the exception section.

1.10.4.2 SQLCODE and SQLERRM

SQLCODE and SQLERRM are built−in functions that provide the SQL error code and message for the
current exception. Use these functions inside the exception section's WHEN OTHERS clause to handle
specific errors by number. The EXCEPTION_INIT pragma allows you to handle errors by name.

CREATE TABLE err_test
 (widget_name VARCHAR2(100)

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.10.3 Scope 34

 ,widget_count NUMBER
 ,CONSTRAINT no_small_numbers CHECK
 (widget_count > 1000));
BEGIN
 INSERT INTO err_test (widget_name, widget_count)
 VALUES ('Athena',2);
EXCEPTION
 WHEN OTHERS THEN
 IF SQLCODE = −2290
 AND SQLERRM LIKE '%NO_SMALL_NUMBERS%'
 THEN
 DBMS_OUTPUT.PUT_LINE('widget_count is too
 small');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Exception not hooked,'
 ||'SQLcode='||SQLCODE);
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 END IF;
END;

Gives the output of:

widget_count is too small

The DBMS_UTILITY.FORMAT_ERROR_STACK and DBMS_UTILITY.FORMAT_CALL_STACK
procedures can be used to capture the full error stack and call stack. See the O'Reilly & Associates book
Oracle PL/SQL Built−in Packages for more information on DBMS_UTILITY.

1.10.4.3 Exceptions and DML

When an exception is raised in a PL/SQL block, it does not rollback your current transaction, even if the block
itself issued an INSERT, UPDATE, or DELETE. You must issue your own ROLLBACK statement if you
want to clean up your transaction due to the exception.

If your exception goes unhandled (propagates out of the outermost block), however, most host environments
will then force an automatic, unqualified rollback of any outstanding changes in your session.

1.9 Cursors in PL/SQL 1.11 Records in PL/SQL

Copyright (c) 2000 O'Reilly & Associates. All rights reserved.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.10.4 Propagation 35

Chapter 1
Oracle PL/SQL Language

Pocket Reference

1.11 Records in PL/SQL

A PL/SQL record is a data structure composed of multiple pieces of information called fields. To use a record,
you must first define it and declare a variable of this type.

There are three types of records: table−based, cursor−based, and programmer−defined.

1.11.1 Declaring Records

You define and declare records either in the declaration section of a PL/SQL block, or globally, via a package
specification.

You do not have to explicitly define table−based or cursor−based records, as they are implicitly defined with
the same structure as a table or cursor. Variables of these types are declared via the %ROWTYPE attribute.
The record's fields correspond to the table's columns or the columns in the SELECT list. For example:

DECLARE
 −− Declare table−based record for company table.
 comp_rec company%ROWTYPE

 CURSOR comp_summary_cur IS
 SELECT C.company_id,SUM(S.gross_sales) gross
 FROM company C ,sales S
 WHERE C.company_id = S.company_id;

 −− Declare a cursor−based record.
 comp_summary_rec comp_summary_cur%ROWTYPE;

Programmer−defined records must be explicitly defined in the PL/SQL block or a package specification with
the TYPE statement. Variables of this type can then be declared:

DECLARE
 TYPE name_rectype IS RECORD(
 prefix VARCHAR2(15)
 ,first_name VARCHAR2(30)
 ,middle_name VARCHAR2(30)
 ,sur_name VARCHAR2(30)
 ,suffix VARCHAR2(10));

 TYPE employee_rectype IS RECORD (
 emp_id NUMBER(10) NOT NULL
 ,mgr_id NUMBER(10)
 ,dept_no dept.deptno%TYPE
 ,title VARCHAR2(20)
 ,name empname_rectype
 ,hire_date DATE := SYSDATE
 ,fresh_out BOOLEAN);

 −− Declare a variable of this type.
 new_emp_rec employee_rectype;

36

BEGIN

1.11.2 Referencing Fields of Records

Individual fields are referenced via dot notation:

record_name.field_name

For example:

employee.first_name

Individual fields within a record can be read from or written to. They can appear on either the left or right side
of the assignment operator:

BEGIN
 insurance_start_date := new_emp_rec.hire_date +
 30;
 new_emp_rec.fresh_out := FALSE;
 ...

1.11.3 Record Assignment

An entire record can be assigned to another record of the same type, but one record cannot be compared to
another record via Boolean operators. This is a valid assignment:

shipto_address_rec := customer_address_rec

This is not a valid comparison:

IF shipto_address_rec = customer_address_rec
THEN
 ...
END IF;

The individual fields of the records need to be compared instead.

Values can be assigned to records or to the fields within a record in four different ways:

•
The assignment operator can be used to assign a value to a field:

new_emp_rec.hire_date := SYSDATE;

•
You can SELECT INTO a whole record or the individual fields:

SELECT emp_id,dept,title,hire_date,college_recruit
 INTO new_emp_rec
 FROM emp
 WHERE surname = 'LI'

•
You can FETCH INTO a whole record or the individual fields:

FETCH emp_cur INTO new_emp_rec;
FETCH emp_cur INTO new_emp_rec.emp_id,
 new_emp_rec.name;

•

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.11.2 Referencing Fields of Records 37

You can assign all of the fields of one record variable to another record variable of the same type:

IF rehire THEN
 new_emp_rec := former_emp_rec;
ENDIF;

This aggregate assignment technique works only for records declared with the same TYPE statement.

1.11.4 Nested Records

Nested records are records contained in fields that are records themselves. Nesting records is a powerful way
to normalize data structures and hide complexity within PL/SQL programs. For example:

DECLARE
 −− Define a record.
 TYPE phone_rectype IS RECORD (
 area_code VARCHAR2(3),
 exchange VARCHAR2(3),
 phn_number VARCHAR2(4),
 extension VARCHAR2(4));

 −− Define a record composed of records.
 TYPE contact_rectype IS RECORD (
 day_phone# phone_rectype,
 eve_phone# phone_rectype,
 cell_phone# phone_rectype);

−− Declare a variable for the nested record.
 auth_rep_info_rec contact_rectype;
BEGIN

1.10 Exception Handling 1.12 Named Program Units

Copyright (c) 2000 O'Reilly & Associates. All rights reserved.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.11.4 Nested Records 38

Chapter 1
Oracle PL/SQL Language

Pocket Reference

1.12 Named Program Units

The PL/SQL programming language allows you to create a variety of named program units (containers for
code). They include:

Procedure
A program that executes one or more statements

Function
A program that returns a value

Package
A container for procedures, functions, and data structures

Triggers
Programs that execute in response to database changes

Object type
Oracle8's version of a SQL3 named row type; object types can contain member procedures and
functions

1.12.1 Procedures

Procedures are program units that execute one or more statements and can receive or return zero or more
values through their parameter lists. The syntax of a procedure is:

CREATE [OR REPLACE] PROCEDURE name
 [(parameter [,parameter])]
 [AUTHID CURRENT_USER | DEFINER] −− Oracle8i
 [DETERMINISTIC] −− Oracle8i
IS | AS
 declaration_section
BEGIN
 executable_section
[EXCEPTION
 exception_section]
END [name];

A procedure is called as a standalone executable PL/SQL statement:

apply_discount(new_company_id, 0.15) −−15% discount

1.12.2 Functions

Functions are program units that execute one or more statements and return a value through the RETURN
clause. Functions can also receive or return zero or more values through their parameter lists. The syntax of a
function is:

39

CREATE [OR REPLACE] FUNCTION name
 [(parameter [,parameter])]
 RETURN return_datatype
 [AUTHID CURRENT_USER | DEFINER] −− Oracle8i
 [DETERMINISTIC] −− Oracle8i
 [PARALLEL_ENABLE] −− Oracle8i
IS | AS
 [declaration_section]
BEGIN
 executable_section
[EXCEPTION
 exception_section]
END [name];

A function must have at least one RETURN statement in the execution section. The RETURN clause in the
function header specifies the datatype of the returned value.

See the Section 1.12.3.8, "Compiling stored PL/SQL programs" section for information on the key words OR
REPLACE, AUTHID, DETERMINISTIC, and PARALLEL_ENABLE.

See the Section 1.12.3.9, "Privileges and stored PL/SQL" section for additional information on the key word
AUTHID.

A function can be called anywhere an expression of the same type can be used. You can call a function:

•
In an assignment statement:

sales95 := tot_sales(1995,'C');

•
To set a default value:

DECLARE
 sales95 NUMBER DEFAULT tot_sales(1995,'C');
BEGIN

•
In a Boolean expression:

IF tot_sales(1995,'C') > 10000
THEN
...

•
In a SQL statement:

SELECT first_name ,surname
 FROM sellers
WHERE tot_sales(1995,'C') > 1000;

•
As an argument in another program unit's parameter list.

Here, for example, max_discount is a programmer−defined function and SYSDATE is a built−in function:

apply_discount(company_id, max_discount(SYSDATE));

[Chapter 1] Oracle PL/SQL Language Pocket Reference

40

1.12.3 Parameters

Procedures, functions, and cursors may have a parameter list. This list contains one or more parameters that
allow you to pass information back and forth between the subprogram and the calling program. Each
parameter is defined by its name, datatype, mode, and optional default value. The syntax for a parameter is:

parameter_name [mode] [NOCOPY] datatype
 [(:= | DEFAULT) value]

1.12.3.1 Datatype

The datatype can be any PL/SQL or programmer−defined datatype, but cannot be constrained by a size
(NUMBER is valid, NUMBER(10) is not valid). The actual size of the parameter is determined from the
calling program or via a %TYPE constraint.

CREATE OR REPLACE PROCEDURE empid_to_name
(in_id emp.emp_id%TYPE −− Compiles OK.
,out_last_name VARCHAR2 −− Compiles OK.
,out_first_name VARCHAR2(10) −− Won't compile.
) IS
...

The lengths of out_last_name and out_first_name are determined by the calling program:

DECLARE
 surname VARCHAR2(10);
 first_name VARCHAR2(10);
BEGIN
 empid_to_name(10, surname, first_name);
END;

1.12.3.2 Mode

The mode of a parameter specifies whether the parameter can be read from or written to, as shown in the
following table.

Mode Description Parameter Usage

IN Read−only The value of the actual parameter can be referenced inside the program, but the
parameter cannot be changed.

OUT Write−only The program can assign a value to the parameter, but the parameter's value cannot be
referenced.

IN OUT Read/write The program can both reference (read) and modify (write) the parameter.

If the mode is not explicitly defined, it defaults to IN.

OUT parameters can be written to. In Oracle7, OUT parameters can appear only on the left side of an
assignment operation. In Oracle8 and above, OUT parameters are read/write and hence can appear on either
side of an assignment. If an exception is raised during execution of a procedure or function, assignments made
to OUT or IN OUT parameters get rolled back.

The NOCOPY (Oracle8i) compiler hint for parameters makes the parameter a call by reference instead of a
call by value. Normally, PL/SQL passes IN/OUT parameters by value −− a copy of the parameter is created
for the subprogram. When parameter items get large, like collections or objects, the copy can eat memory and
slow the processing. NOCOPY directs PL/SQL to pass the parameter by reference, using a pointer to the
single copy of the parameter. The disadvantage of NOCOPY is that when an exception is raised during
execution of a program that has modified an OUT or IN OUT parameter, the changes to the actual parameters

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.12.3 Parameters 41

are not rolled back because the parameters were passed by reference instead of being copied.

1.12.3.3 Default values

IN parameters can be given default values. If an IN parameter has a default value, then you do not need to
supply an argument for that parameter when you call the program unit. It automatically uses the default value.
For example:

CREATE OR REPLACE PROCEDURE hire_employee
(emp_id IN VARCHAR2
,hire_date IN DATE := SYSDATE
,company_id IN NUMBER := 1
) IS
...

−− Example calls to the procedure.
−− Use two default values.
hire_employee(new_empno);
−− Use one default value.
hire_employee(new_empno,'12−Jan−1999');
−− Use non−trailing default value, named notation.
hire_employee(emp_id=>new_empno, comp_id=>12);

1.12.3.4 Parameter−passing notations

Formal parameters are the names that are declared in the header of a procedure or function. Actual
parameters are the values or expressions placed in the parameter list when a procedure or function is called.
In the empid_to_name example shown earlier in the Section 1.12.3.1, "Datatype" section, the actual
parameters to the procedure are in_id, out_last_name, and out_first_name. The formal parameters used in the
call to this procedure are 10, surname, and first_name.

PL/SQL lets you use either of two styles for passing arguments in parameter lists: positional or named
notation.

Positional notation
This is the default. Each value in the list of arguments supplied in the program call is associated with
the parameter in the corresponding position.

Named notation
This explicitly associates the argument value with its parameter by name (not position). When you use
named notation, you can supply the arguments in any order and you can skip over IN arguments that
have default values.

The call to the empid_to_name procedure is shown here with both notations:

BEGIN
 −− Implicit positional notation.
 empid_to_name(10, surname, first_name);

 −− Explicit named notation.
 empid_to_name(in_id=>10
 ,out_last_name=>surname
 ,out_first_name=>first_name);
END;

When calling stored functions from SQL, named notation is not supported.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.12.3 Parameters 42

1.12.3.5 Local program

A local program is a procedure or function that is defined in the declaration section of a PL/SQL block. The
declaration of a local program must appear at the end of the declaration section, after the declarations of any
types, records, cursors, variables, and exceptions. A program defined in a declaration section may only be
referenced within that block's executable and exception sections. It is not defined outside that block.

The following program defines a local procedure and function:

PROCEDURE track_revenue
IS
 PROCEDURE calc_total (year_in IN INTEGER) IS
 BEGIN
 calculations here ...
 END;

 FUNCTION below_minimum (comp_id IN INTEGER)
 RETURN BOOLEAN
 IS
 BEGIN
 ...
 END;

Local programs may be overloaded with the same restrictions as overloaded packaged programs.

1.12.3.6 Program overloading

PL/SQL allows you to define two or more programs with the same name within any declaration section,
including a package specification or body. This is called overloading. If two or more programs have the same
name, they must be different in some other way so that the compiler can determine which program should be
used.

Here is an example of overloaded programs in a built−in package specification:

PACKAGE DBMS_OUTPUT
IS
 PROCEDURE PUT_LINE (a VARCHAR2);
 PROCEDURE PUT_LINE (a NUMBER);
 PROCEDURE PUT_LINE (a DATE);
END;

Each PUT_LINE procedure is identical, except for the datatype of the parameter. That is enough difference
for the compiler.

To overload programs successfully, one or more of the following conditions must be true:

•
Parameters must differ by datatype family (number, character, datetime, or Boolean).

•
The program type must be different (you can overload a function and a procedure of the same name
and identical parameter list).

•
The numbers of parameters must be different.

You cannot overload programs if:

•

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.12.3 Parameters 43

Only the datatypes of the functions' RETURN clauses are different.

•
Parameter datatypes are within the same family (CHAR and VARCHAR2, NUMBER and INTEGER,
etc.).

•
Only the modes of the parameters are different.

1.12.3.7 Forward declarations

Programs must be declared before they can be used. PL/SQL supports mutual recursion, in which program A
calls program B, whereupon program B calls program A. To implement this mutual recursion, you must use a
forward declaration of the programs. This technique declares a program in advance of the program definition,
thus making it available for other programs to use. The forward declaration is the program header up to the
IS/AS keyword:

PROCEDURE perform_calc(year_in IN NUMBER)
IS
 /* Forward declaration for total_cost
 function. */
 FUNCTION total_cost (...) RETURN NUMBER;

 /* The net_profit function can now use
 total_cost. */
 FUNCTION net_profit(...) RETURN NUMBER
 IS
 BEGIN
 RETURN total_sales(...) − total_cost(...);
 END;

 /* The Total_cost function calls net_profit. */
 FUNCTION total_cost (...) RETURN NUMBER
 IS
 BEGIN
 IF net_profit(...) < 0
 THEN
 RETURN 0;
 ELSE
 RETURN...;
 END IF;
 END;
BEGIN /* procedure perform_calc */
 ...
END perform_calc;

1.12.3.8 Compiling stored PL/SQL programs

The following keywords are new with Oracle8i:

OR REPLACE
Used to rebuild an existing program unit, preserving its privileges.

AUTHID
Defines whether the program will execute with the privileges of, and resolve names like, the object
owner (DEFINER), or as the user executing the function (CURRENT_USER). Prior to Oracle8i, only
the built−in packages DBMS_SQL and DBMS_UTILITY executed as CURRENT_USER. The
default AUTHID is DEFINER.

REPEATABLE

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.12.3 Parameters 44

Required for functions and any dependent programs used in domain (application−defined) indexes.

DETERMINISTIC
Required for function−based indexes. A function is DETERMINISTIC if it does not meaningfully
reference package variables or the database.

PARALLEL_ENABLED
Tells the optimizer that a function is safe for parallel execution. It replaces the statement:

PRAGMA RESTRICT REFERENCES (function_name, wnps,
 rnps, wnds, rnds);

1.12.3.9 Privileges and stored PL/SQL

Unless you're using an invoker's rights program in Oracle8i, roles cannot provide object or system privileges
that can be used inside stored PL/SQL. You must have privileges granted directly to you for objects that,
rather than owning, you reference in stored SQL or PL/SQL (procedures, functions, packages, triggers, and
views). This restriction arises from the manner in which the database obtains privileges and checks for objects
referenced from SQL.

Direct GRANT and REVOKE privileges cannot be different for two concurrent sessions of the same user,
while roles can be disabled in only one session. Privileges are checked when stored PL/SQL is compiled, and
since only GRANT and REVOKE privileges can be relied upon to remain enabled, they are the only
privileges checked.

This direct GRANT restriction does not apply for anonymous PL/SQL blocks because such blocks are
compiled at runtime when all privileges are known. It also does not apply for procedures and functions with
the AUTHID of CURRENT_USER (Oracle8i).

1.11 Records in PL/SQL 1.13 Triggers

Copyright (c) 2000 O'Reilly & Associates. All rights reserved.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.12.3 Parameters 45

Chapter 1
Oracle PL/SQL Language

Pocket Reference

1.13 Triggers

Triggers are programs that execute in response to changes in table data or certain database events. There is a
predefined set of events that can be "hooked" with a trigger, enabling you to integrate your own processing
with that of the database. A triggering event fires or executes the trigger.

1.13.1 Creating Triggers

The syntax for creating a trigger is:

BEFORE | AFTER | INSTEAD OF trigger_event
 ON
 [NESTED TABLE nested_table_column OF view]
 | table_or_view_reference | DATABASE
trigger_body;

INSTEAD OF triggers are valid on only Oracle8 views. Oracle8i must create a trigger on a nested table
column.

Trigger events are defined in the following table.

Trigger Event Description

INSERT Fires whenever a row is added to the table_reference.

UPDATE Fires whenever an UPDATE changes the table_reference. UPDATE triggers
can additionally specify an OF clause to restrict firing to updates OF certain
columns. See the following examples.

DELETE Fires whenever a row is deleted from the table_reference. Does not fire on
TRUNCATE of the table.

CREATE (Oracle8i) Fires whenever a CREATE statement adds a new object to the database. In this
context, objects are things like tables or packages (found in ALL_OBJECTS).
Can apply to a single schema or the entire database.

ALTER (Oracle8i) Fires whenever an ALTER statement changes a database object. In this context,
objects are things like tables or packages (found in ALL_OBJECTS). Can apply
to single schema or the entire database.

DROP (Oracle8i) Fires whenever a DROP statement removes an object from the database. In this
context, objects are things like tables or packages (found in ALL_OBJECTS).
Can apply to a single schema or the entire database.

SERVERERROR
(Oracle8i)

Fires whenever a server error message is logged. Only AFTER triggers are
allowed in this context.

LOGON (Oracle8i) Fires whenever a session is created (a user connects to the database). Only
AFTER triggers are allowed in this context.

46

LOGOFF (Oracle8i) Fires whenever a session is terminated (a user disconnects from the database).
Only BEFORE triggers are allowed in this context.

STARTUP (Oracle8i) Fires when the database is opened. Only AFTER triggers are allowed in this
context.

SHUTDOWN (Oracle8i) Fires when the database is closed. Only BEFORE triggers are allowed in this
context.

Triggers can fire BEFORE or AFTER the triggering event. AFTER data triggers are slightly more efficient
than BEFORE triggers.

The referencing_clause is only allowed for the data events INSERT, UPDATE, and DELETE. It lets you give
a non−default name to the old and new pseudo−records. These pseudo−records give the program visibility to
the pre− and post−change values in row−level triggers. These records are defined like %ROWTYPE records,
except that columns of type LONG or LONG RAW cannot be referenced. They are prefixed with a colon in
the trigger body, and referenced with dot notation. Unlike other records, these fields can only be assigned
individually −− aggregate assignment is not allowed. All old fields are NULL within INSERT triggers, and
all new fields are NULL within DELETE triggers.

FOR EACH ROW defines the trigger to be a row−level trigger. Row−level triggers fire once for each row
affected. The default is a statement−level trigger, which fires only once for each triggering statement.

The WHEN trigger_condition specifies the conditions that must be met for the trigger to fire. Stored functions
and object methods are not allowed in the trigger condition.

The trigger body is a standard PL/SQL block. For example:

CREATE OR REPLACE TRIGGER add_uid
 BEFORE INSERT ON emp
 REFERENCING NEW as new_row
 FOR EACH ROW
 BEGIN
 −− Automatically timestamp the entry.
 SELECT SYSDATE INTO :new_row.entry_date
 FROM dual;
END add_uid;

Triggers are enabled on creation, and can be disabled (so they do not fire) with an ALTER statement:

ALTER TRIGGER trigger_name ENABLE | DISABLE;

ALTER TABLE table_name ENABLE | DISABLE ALL
 TRIGGERS;

1.13.2 Trigger Predicates

When using a single trigger for multiple events, use the trigger predicates INSERTING, UPDATING, and
DELETING in the trigger condition to identify the triggering event:

CREATE OR REPLACE TRIGGER emp_log_t
 AFTER INSERT OR UPDATE OR DELETE ON emp
 FOR EACH ROW
DECLARE
 dmltype CHAR(1);
BEGIN
 IF INSERTING THEN
 dmltype := 'I';
 INSERT INTO emp_log (emp_no, who, operation)
 VALUES (:new.empno, USER, dmltype);
 ELSIF UPDATING THEN

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.13.2 Trigger Predicates 47

 dmltype := 'U';
 INSERT INTO emp_log (emp_no, who, operation)
 VALUES (:new.empno, USER, dmltype);
 END IF;
END;

1.13.3 DML Events

The DML events include INSERT, UPDATE, or DELETE statements on a table or view. Triggers on these
events can be statement− (table only) or row−level triggers and can fire BEFORE or AFTER the triggering
event. BEFORE triggers can modify the data in affected rows, but perform an additional logical read. AFTER
triggers do not perform this additional logical read, and therefore perform slightly better, but are not able to
change the :new values. Triggers cannot be created on SYS−owned objects. The order in which these triggers
fire, if present, is as follows:

1.
BEFORE statement−level trigger

2.
For each row affected by the statement:

a.
BEFORE row−level trigger

b.
The triggering statement

c.
AFTER row−level trigger

3.
AFTER statement−level trigger

1.13.4 DDL Events (Oracle8i)

The DDL events are CREATE, ALTER, and DROP. These triggers fire whenever the respective DDL
statement is executed. DDL triggers can apply to either a single schema or the entire database.

1.13.5 Database Events (Oracle8i)

The database events are SERVERERROR, LOGON, LOGOFF, STARTUP, and SHUTDOWN. Only
BEFORE triggers are allowed for LOGOFF and SHUTDOWN events. Only AFTER triggers are allowed for
LOGON, STARTUP, and SERVERERROR events. A SHUTDOWN trigger will fire on a SHUTDOWN
NORMAL and a SHUTDOWN IMMEDIATE, but not on a SHUTDOWN ABORT.

1.12 Named Program Units 1.14 Packages

Copyright (c) 2000 O'Reilly & Associates. All rights reserved.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.13.3 DML Events 48

Chapter 1
Oracle PL/SQL Language

Pocket Reference

1.14 Packages

A package is a collection of PL/SQL objects that are grouped together.

There are a number of benefits to using packages, including information hiding, object−oriented design,
top−down design, object persistence across transactions, and improved performance.

Elements that can be placed in a package include procedures, functions, constants, variables, cursors,
exception names, and TYPE statements (for index−by tables, records, REF CURSORs, etc.).

1.14.1 Overview of Package Structure

A package can have two parts: the specification and the body. The package specification is required and lists
all the objects that are publicly available (may be referenced from outside the package) for use in applications.
It also provides all the information a developer needs in order to use objects in the package; essentially, it is
the package's API.

The package body contains all code needed to implement procedures, functions, and cursors listed in the
specification, as well as any private objects (accessible only to other elements defined in that package), and an
optional initialization section.

If a package specification does not contain any procedures or functions and no private code is needed, then
that package does not need to have a package body.

The syntax for the package specification is:

CREATE [OR REPLACE] PACKAGE package_name
[AUTHID CURRENT_USER | DEFINER] −− Oracle8i
IS | AS

 [definitions of public TYPEs
 ,declarations of public variables, types and
 objects
 ,declarations of exceptions
 ,pragmas
 ,declarations of cursors, procedures and
 functions
 ,headers of procedures and functions]

END [package_name];

The syntax for the package body is:

CREATE [OR REPLACE] PACKAGE BODY package_name
 IS | AS

 [definitions of private TYPEs
 ,declarations of private variables, types and

49

 objects
 ,full definitions of cursors
 ,full definitions of procedures and functions]

[BEGIN
 executable_statements

[EXCEPTION
 exception_handlers]]

END [package_name];

The optional OR REPLACE keywords are used to rebuild an existing package, preserving its privileges. The
declarations in the specifications cannot be repeated in the body. Both the executable section and the
exception section are optional in a package body. If the executable section is present, it is called the
initialization section and executes only once −− the first time any package element is referenced during a
session.

You must compile the package specification before the body specification. When you grant EXECUTE
authority on a package to another schema or to PUBLIC, you are giving access only to the specification; the
body remains hidden.

Here's an example of a package:

CREATE OR REPLACE PACKAGE time_pkg IS
 FUNCTION GetTimestamp RETURN DATE;
 PRAGMA RESTRICT_REFERENCES (GetTimestamp, WNDS);

 PROCEDURE ResetTimestamp;
END time_pkg;

CREATE OR REPLACE PACKAGE BODY time_pkg IS
 StartTimeStamp DATE := SYSDATE;
 −− StartTimeStamp is package data.

 FUNCTION GetTimestamp RETURN DATE IS
 BEGIN
 RETURN StartTimeStamp;
 END GetTimestamp;

 PROCEDURE ResetTimestamp IS
 BEGIN
 StartTimeStamp := SYSDATE;
 END ResetTimestamp;

END time_pkg;

1.14.2 Referencing Package Elements

The elements declared in the specification are referenced from the calling application via dot notation:

package_name.package_element

For example, the built−in package DBMS_OUTPUT has a procedure PUT_LINE, so a call to this package
would look like this:

DBMS_OUTPUT.PUT_LINE('This is parameter data');

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.14.2 Referencing Package Elements 50

1.14.3 Package Data

Data structures declared within a package specification or body, but outside any procedure or function in the
package, are package data. The scope of package data is your entire session; it spans transaction boundaries,
acting as globals for your programs.

Keep the following guidelines in mind as you work with package data:

•
The state of your package variables is not affected by COMMITs and ROLLBACKs.

•
A cursor declared in a package has global scope. It remains OPEN until you close it explicitly or your
session ends.

•
A good practice is to hide your data structures in the package body and provide "get and set"
programs to read and write that data. This technique protects your data.

1.14.3.1 The SERIALLY_REUSABLE pragma

If you need package data to exist only during a call to the packaged functions or procedures, and not between
calls of the current session, you can save runtime memory by using the pragma SERIALLY_REUSABLE.
After each call, PL/SQL closes the cursors and releases the memory used in the package. This technique is
applicable only to large user communities executing the same routine. Normally, the database server's
memory requirements grow linearly with the number of users; with SERIALLY_REUSABLE, this growth
can be less than linear, since work areas for package states are kept in a pool in the SGA (System Global
Area) and are shared among all users. This pragma must appear in both the specification and the body:

CREATE OR REPLACE PACKAGE my_pkg IS
 PRAGMA SERIALLY_REUSABLE;
 PROCEDURE foo;
END my_pkg;

CREATE OR REPLACE PACKAGE BODY my_pkg IS
 PRAGMA SERIALLY_REUSABLE;
 PROCEDURE foo IS
 ...
END my_pkg;

1.14.4 Package Initialization

The first time a user references a package element, the entire package is loaded into the SGA of the database
instance to which the user is connected. That code is then shared by all sessions that have EXECUTE
authority on the package.

Any package data are then instantiated into the session's UGA (User Global Area), a private area in either the
SGA or PGA (Program Global Area). If the package body contains an initialization section, that code will be
executed. The initialization section is optional and appears at the end of the package body, beginning with a
BEGIN statement and ending with the EXCEPTION section (if present) or the END of the package.

The following package initialization section runs a query to transfer the user's minimum balance into a global
package variable. Programs can then reference the packaged variable (via the function) to retrieve the balance,
rather than executing the query repeatedly:

CREATE OR REPLACE PACKAGE usrinfo

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.14.3 Package Data 51

IS
 FUNCTION minbal RETURN VARCHAR2;
END usrinfo;
/

CREATE OR REPLACE PACKAGE BODY usrinfo
IS
 g_minbal NUMBER; −− Package data
 FUNCTION minbal RETURN VARCHAR2
 IS BEGIN RETURN g_minbal; END;
BEGIN −− Initialization section
 SELECT minimum_balance
 INTO g_minbal
 FROM user_configuration
 WHERE username = USER;
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN g_minbal := NULL;
END usrinfo;

1.13 Triggers 1.15 Calling PL/SQL
Functions in SQL

Copyright (c) 2000 O'Reilly & Associates. All rights reserved.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.14.3 Package Data 52

Chapter 1
Oracle PL/SQL Language

Pocket Reference

1.15 Calling PL/SQL Functions in SQL

Stored functions can be called from SQL statements in a manner similar to built−in functions like DECODE,
NVL, or RTRIM. This is a powerful technique for incorporating business rules into SQL in a simple and
elegant way. Unfortunately, there are a number of caveats and restrictions.

The most notable caveat is that stored functions executed from SQL are not guaranteed to follow the read
consistency model of the database. Unless the SQL statement and any stored functions in that statement are in
the same read−consistent transaction (even if they are read−only), each execution of the stored function will
look at a different time−consistent set of data. To avoid this potential problem, you need to ensure read
consistency programmatically by issuing the SET TRANSACTION READ ONLY or SET TRANSACTION
SERIALIZABLE statement before executing your SQL statement containing the stored function. A COMMIT
or ROLLBACK then needs to follow the SQL statement to end this read−consistent transaction.

1.15.1 Syntax for Calling Stored Functions in SQL

The syntax for calling a stored function from SQL is the same as referencing it from PL/SQL:

[schema_name.][pkg_name.]func_name[@db_link]
 [parm_list]

schema_name is optional and refers to the user/owner of the function or package. pkg_name is optional and
refers to the package containing the called function. func_name is mandatory and is the function name.
db_link is optional and refers to the database link name to the remote database containing the function.
parm_list is optional, as are the parameters passed to the function.

The following are example calls to the GetTimestamp function in the time_pkg example seen earlier in the
Section 1.14.1, "Overview of Package Structure " section:

−− Capture system events.
INSERT INTO v_sys_event (timestamp ,event
 ,qty_waits)
 SELECT time_pkg.GetTimestamp ,event ,total_waits
 FROM v$system_event

−− Capture system statistics.
INSERT INTO v_sys_stat (timestamp,stat#,value)
 SELECT time_pkg.GetTimestamp ,statistic# ,value
 FROM v$sysstat;

1.15.2 Requirements and Restrictions on Stored Functions in SQL

There are a number of requirements for calling stored functions in SQL:

•
The function must be a single−row function −− not one that operates on a column or group function.

•
53

All parameters must be IN; no IN OUT or OUT parameters are allowed.

•
The datatypes of the function's parameters and RETURN must be compatible with RDBMS
datatypes. You cannot have arguments or RETURN types like BOOLEAN, programmer−defined
record, index−by table, etc.

•
The parameters passed to the function must use positional notation; named notation is not supported.

•
Functions defined in packages must have a RESTRICT_REFERENCES pragma in the specification
(Oracle8.0 and earlier).

•
The function must be stored in the database, not a local program, Developer/2000 PL/SQL library, or
Form.

1.15.3 Calling Packaged Functions in SQL

Prior to Oracle8i Release 8.1, it was necessary to assert the purity level of a packaged procedure or function
when using it directly or indirectly in a SQL statement. Beginning with Oracle8i Release 8.1, the PL/SQL
runtime engine determines a program's purity level automatically if no assertion exists.

The RESTRICT_REFERENCES pragma asserts a purity level. The syntax for the
RESTRICT_REFERENCES pragma is:

PRAGMA RESTRICT_REFERENCES (program_name |
 DEFAULT, purity_level);

The keyword DEFAULT applies to all methods of an object type or all programs in a package.

There can be from one to five purity levels, in any order, in a comma−delimited list. The purity level
describes to what extent the program or method is free of side effects. Side effects are listed in the following
table with the purity levels they address.

Purity Level Description Restriction

WNDS Write No Database
State

Executes no INSERT, UPDATE, or DELETE statements.

RNDS Read No Database
State

Executes no SELECT statements.

WNPS Write No Package
State

Does not modify any package variables.

RNPS Read No Package
State

Does not read any package variables.

TRUST
(Oracle8i)

Does not enforce the restrictions declared but allows the compiler to
trust they are true.

The purity level requirements for packaged functions are different depending on where in the SQL statement
the stored functions are used:

•
To be called from SQL, all stored functions must assert WNDS.

•

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.15.3 Calling Packaged Functions in SQL 54

All functions not used in a SELECT, VALUES, or SET clause must assert WNPS.

•
To be executed remotely, the function must assert WNPS and RNPS.

•
To be executed in parallel, the function must assert all four purity levels or, in Oracle8i, use
PARALLEL_ENABLED in the declaration.

•
These functions must not call any other program that does not also assert the minimum purity level.

•
If a package has an initialization section, it too must assert purity in Oracle7.

•
If a function is overloaded, each overloading must assert its own purity level, and the levels don't have
to be the same. To do this, place the pragma immediately after each overloaded declaration.

Many of the built−in packages, including DBMS_OUTPUT, DBMS_PIPE, and DBMS_SQL, do not assert
WNPS or RNPS, so their use in SQL stored functions is necessarily limited.

1.15.3.1 Column/function name precedence

If your function has the same name as a table column in your SELECT statement and the function has no
parameter, then the column takes precedence over the function. To force the RDBMS to resolve the name to
your function, prepend the schema name to it:

CREATE TABLE emp(new_sal NUMBER ...);
CREATE FUNCTION new_sal RETURN NUMBER IS ...;

SELECT new_sal FROM emp; −− Resolves to column.
SELECT scott.new_sal FROM emp;−− Resolves to
 function.

1.14 Packages 1.16 Oracle8 Objects

Copyright (c) 2000 O'Reilly & Associates. All rights reserved.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.15.3 Calling Packaged Functions in SQL 55

Chapter 1
Oracle PL/SQL Language

Pocket Reference

1.16 Oracle8 Objects

In Oracle8, an object type combines attributes (data structures) and methods (functions and procedures) into a
single programming construct. The object type construct allows programmers to defined their own reusable
datatypes for use in PL/SQL programs and table and column definitions.

An instance of an object type is an object in the same way that variables are instances of scalar types. Objects
are either persistent (stored in the database) or transient (stored only in PL/SQL variables). Objects can be
stored in a database as a row in a table (a row object) or as a column in a table. A table of row objects can be
created with syntax such as this:

CREATE TABLE table_name OF object_type;

When stored in the database as a row object, the object (row) has an OID (Object IDentifier) that is unique
throughout the database.

1.16.1 Object Types

An object type has two parts: the specification and the body. The specification is required and contains the
attributes and method specifications. The syntax for creating the object type specification is:

CREATE [OR REPLACE] TYPE obj_type_name
[AUTHID CURRENT_USER | DEFINER] −− Oracle8i
AS OBJECT (
 attribute_name datatype,...,
 [MEMBER | STATIC PROCEDURE | FUNCTION
 program_spec],
 [ORDER | MAP MEMBER FUNCTION
 comparison_function_spec],
 [PRAGMA RESTRICT_REFERENCES(program_name,
 purities)]
);

All attribute specifications must appear before all method specifications. Object attributes, like variables, are
declared with a name and a datatype. The name can be any legal identifier. Attribute datatypes can be any
SQL datatype except LONG, LONG RAW, NCHAR, NVARCHAR2, NCLOB, ROWID, and UROWID.
Attributes cannot have datatypes unique to PL/SQL such as BOOLEAN.

Member function and procedure headers are listed in the object type specification in a comma−delimited list.
Unlike in a package specification, commas (not semicolons) terminate the object type program specifications.
To support object comparisons and sorting, the type can optionally include one comparison method −− either
ORDER or MAP.

Member programs can assert purity with the RESTRICT_REFERENCES pragma. (See the earlier Section
1.15.1, "Syntax for Calling Stored Functions in SQL " section for more information on this pragma.) Member
methods can be overloaded in object types following the same rules as function and procedure overloading in
packages.

56

The syntax for creating the object type body is:

CREATE [OR REPLACE] TYPE BODY obj_type_name
AS OBJECT (
 [MEMBER | STATIC PROCEDURE | FUNCTION
 program_body;]
 [ORDER | MAP MEMBER FUNCTION
 comparison_function_body;]
);

The keyword STATIC is new starting with Oracle8i. Static methods do not use the current SELF object.

1.16.2 Methods

Every object has a default method, a constructor, which has the same name as the object type. The constructor
constructs an instance of the object type from the elements passed to it, and returns the new object. This
built−in method:

•
Has the same name as the object type

•
Is a function that returns an object of that type

•
Accepts attributes in named or positional notation

•
Must be called with a value (or NULL) for every attribute −− there is no DEFAULT clause for object
attributes

•
Cannot be modified

If you wish to create your own pseudo−constructor, create a STATIC function that returns an object of the
corresponding type.

All non−static methods have the built−in parameter SELF, which references the instance of the object. The
default mode for the SELF parameter is IN for functions and IN OUT for procedures. SELF can be explicitly
declared with a non−default mode.

ORDER and MAP methods establish ordinal positions of objects for non−equality comparisons such as "<" or
"between" and for sorting (ORDER BY, GROUP BY, DISTINCT). An ORDER function accepts two
parameters: SELF, and another object of the same type. It must return an INTEGER with values of −1, 0, 1, or
NULL.

See the following table for a description of these return values.

Return Value Object Comparison

−1 SELF < second object

0 SELF = second object

1 SELF > second object

NULL Undefined comparison, i.e., attributes needed for the comparison are NULL

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.16.2 Methods 57

For example, the Senate ranks majority party members higher than non−majority party members and within
the majority (or non−majority), by years of service. Here is an example ORDER function incorporating these
rules:

CREATE TYPE senator_t AS OBJECT (
 majority boolean_t,
 yrs_service NUMBER,
 ORDER MEMBER FUNCTION ranking (other IN
 senator_t)
 RETURN INTEGER);

CREATE OR REPLACE TYPE BODY senator_t AS
 ORDER MEMBER FUNCTION ranking (other IN
 senator_t)
 RETURN INTEGER
 IS
 BEGIN
 IF SELF.majority.istrue()
 AND other.majority.istrue()
 THEN
 RETURN SIGN(SELF.yrs_service −
 other.yrs_service);
 ELSIF SELF.majority.istrue()
 AND other.majority.isfalse()
 THEN
 RETURN 1;
 ELSIF SELF.majority.isfalse()
 AND other.majority.istrue()
 THEN
 RETURN −1;
 ELSIF SELF.majority.isfalse()
 AND other.majority.isfalse()
 THEN
 RETURN SIGN(SELF.yrs_service −
 other.yrs_service);
 END IF;
 END ranking;
END;

A MAP function accepts no parameters and returns a scalar datatype such as DATE, NUMBER, or
VARCHAR2 for which Oracle already knows a collating sequence. The MAP function translates, or maps,
each object into a scalar datatype space that Oracle knows how to compare. When they exist, MAP methods
are often more efficient than ORDER methods and are required for hash joins on the object in SQL.

If no ORDER or MAP function exists for an object type, SQL, but not PL/SQL, supports only limited equality
comparisons of objects. Objects are equal if they are of the same object type and if each attribute is equal.

1.16.3 Manipulating Objects in PL/SQL and SQL

There are three ways to initialize an object:

1.
Using the constructor method

2.
Directly assignmening an existing object to a new object

3.
Using SELECT INTO or FETCH INTO

Here is an example using each initialization technique:

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.16.3 Manipulating Objects in PL/SQL and SQL 58

DECLARE
 project_boiler_plate project_t;
 build_web_site project_t;

 −− Initialize via constructor.
 new_web_mgr proj_mgr_t :=
 proj_mgr_t('Ruth', 'Home Office');

 CURSOR template_cur IS
 SELECT VALUE(proj)
 FROM projects
 WHERE project_type = 'TEMPLATE'
 AND sub_type = 'WEB SITE';
 BEGIN
 OPEN template_cur;
 −− Initialize via FETCH INTO.
 FETCH template_cur
 INTO project_boiler_plate;

 −− Initialize via assignment.
 build_web_site := project_boiler_plate;
 ...

After an object is initialized, it can be stored in the database, and you can then locate and use that object with
the REF, VALUE, and DEREF operators.

1.16.3.1 The REF operator

REF, short for REFerence, designates a datatype modifier or an operator to retrieve a logical pointer to an
object. This pointer encapsulates the OID and can simplify navigation among related database objects.

The syntax for a REF operator is:

REF(table_alias_name)

For example:

SELECT REF(p) FROM pets p WHERE ...

A PL/SQL variable can hold a reference to a particular object type:

DECLARE
 petref REF Pet_t;
BEGIN
 SELECT REF(p) INTO petref FROM pets p WHERE ...

Through deletions, REFs can reference a nonexistent object −− called a dangling REF −− resulting in a state
that can be detected with the IS DANGLING predicate. For example:

UPDATE pets
 SET owner_ref = NULL
 WHERE owner_ref IS DANGLING.

1.16.3.2 The VALUE operator

Use the VALUE operator to retrieve a row object as a single object rather than multiple columns. The syntax
for the VALUE operator is:

VALUE(table_alias_name)

For example:

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.16.3 Manipulating Objects in PL/SQL and SQL 59

SELECT VALUE(p) FROM pets p WHERE ...

1.16.3.3 The DEREF operator

Use the DEREF operator to retrieve the value of an object for which you have a REF. The syntax for the
DEREF operator is:

DEREF(table_alias_name)

For example:

DECLARE
 person_ref REF person_t;
 author person_t;
BEGIN
 −− Get the ref.
 SELECT REF(p) INTO person_ref
 FROM persons WHERE p.last_name ='Pribyl';

 −− Dereference the pointer back to the value.
 SELECT DEREF(person_ref) INTO author FROM dual;
 ...

Additionally, Oracle uses an OID internally as a unique key to each object. Like a ROWID, you don't
typically use an OID directly.

The following table shows ways of referencing persistent objects.

Scheme Description Applications

OID An opaque, globally unique handle, produced when
the object is stored in the database as a table (row)
object.

This is the persistent object's handle; it's
what REFs point to. Your program never
uses it directly.

VALUE An operator. In SQL, it acts on an object in an object
table and returns the object's contents. Different from
the VALUES keyword found in some INSERT
statements.

Allows quasi−normalizing of
object−relational databases and joining of
object tables using dot navigation. In
PL/SQL, REFs serve as input/output
variables.

REF A pointer to an object. May be used within a SQL
statement as an operator or in a declaration as a type
modifier.

Used when fetching a table (row) object
into a variable, or when you need to refer to
an object table as an object instead of a list
of columns.

DEREF Reverse pointer lookup for REFs. Used for retrieving the contents of an object
when all you know is its REF.

1.16.4 Changing Object Types

You can add methods, but not attributes, to an object type stored in the database using the ALTER TYPE
statement:

ALTER TYPE type_name REPLACE AS OBJECT (
 new_object_type_specification
);

The only supported change you can make in the new object type specification is to include new methods.

It is also possible to rebuild an object table with different physical storage characteristics by using the built−in
procedure DBMS_DDL.ALTER_TABLE_REFERENCEABLE.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.16.3 Manipulating Objects in PL/SQL and SQL 60

The syntax for dropping an object type is:

DROP TYPE type_name [FORCE];

You can drop only an object type that has not been implemented in a table (or you can drop the tables first).
The FORCE option will drop object types even if they have dependencies, but FORCE will irreversibly
invalidate any dependent objects such as tables. FORCE does not do a DROP CASCADE.

1.15 Calling PL/SQL
Functions in SQL

1.17 Collections

Copyright (c) 2000 O'Reilly & Associates. All rights reserved.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.16.3 Manipulating Objects in PL/SQL and SQL 61

Chapter 1
Oracle PL/SQL Language

Pocket Reference

1.17 Collections

There are three types of collections: index−by tables (formerly known as PL/SQL tables), nested tables, and
VARRAYs.

Index−by table
Single−dimension, unbounded collections of homogeneous elements available only in PL/SQL, not in
the database. Index−by tables are initially sparse; they have nonconsecutive subscripts.

Nested table
Single−dimension, unbounded collections of homogeneous elements available in both PL/SQL and
the database as columns or tables. Nested tables are initially dense (they have consecutive subscripts),
but can become sparse through deletions.

VARRAYs
Variable−size arrays are single−dimension, bounded collections of homogeneous elements available
in both PL/SQL and the database. VARRAYs are never sparse. Unlike nested tables, their element
order is preserved when you store and retrieve them from the database.

The following table compares these similar collection types.

Collection Type

Characteristic Index−by Table Nested Table VARRAY

Dimensionality Single Single Single

Usable in SQL? No Yes Yes

Usable as a column
datatype in a table?

No Yes; data stored "out of
line" (in a separate
table)

Yes; data
typically stored
"in line" (in the
same table)

Uninitialized state Empty (cannot be NULL); elements
are undefined

Atomically null; illegal
to reference elements

Atomically null;
illegal to
reference
elements

Initialization Automatic, when declared Via constructor, fetch,
assignment

Via constructor,
fetch,
assignment

In PL/SQL, elements
referenced by

BINARY_INTEGER (−2,147,483,647

.. 2,147,483,647)

Positive integer between
1 and 2,147483,647

Positive integer
between 1 and
2,147483,647

Sparse? Yes Initially no; after
deletions, yes

No

62

Bounded? No Can be extended Yes

Can assign a value to any
element at any time?

Yes No; may need to
EXTEND first

No; may need to
EXTEND first,
and cannot
EXTEND past
the upper bound

Means of extending Assign value to element with a new
subscript

Use built−in EXTEND
procedure or TRIM to
condense, with no
predefined maximum

EXTEND or
TRIM, but only
up to declared
maximum size.

Can be compared for
equality?

No No No

Elements retain ordinal
position and subscript
when stored and retrieved
from the database

N/A −− can't be stored in database No Yes

1.17.1 Syntax for Declaring Collection Datatypes

Collections are implemented as TYPEs. Like any programmer−defined type, you must first define the type;
then you can declare instances of that type. The TYPE definition can be stored in the database or declared in
the PL/SQL program. Each instance of the TYPE is a collection.

The syntax for declaring an index−by table is:

TYPE type_name IS TABLE OF element_type [NOT NULL] INDEX BY BINARY_INTEGER;

The syntax for a nested table is:

[CREATE [OR REPLACE]] TYPE type_name IS TABLE OF
 element_type [NOT NULL];

The syntax for a VARRAY is:

[CREATE [OR REPLACE]] TYPE type_name IS VARRAY |
 VARYING ARRAY (max_elements) OF element_type
 [NOT NULL];

The CREATE keyword defines the statement to be DDL and indicates that this type will exist in the database.
The optional OR REPLACE keywords are used to rebuild an existing type, preserving the privileges.
type_name is any valid identifier that will be used later to declare the collection. max_elements is the
maximum size of the VARRAY. element_type is the type of the collection's elements. All elements are of a
single type, which can be most scalar datatypes, an object type, or a REF object type. If the elements are
objects, the object type itself cannot have an attribute that is a collection. Explicitly disallowed collection
datatypes are BOOLEAN, NCHAR, NCLOB, NVARCHAR2, REF CURSOR, TABLE, and VARRAY.

NOT NULL indicates that a collection of this type cannot have any null elements. However, the collection can
be atomically null (uninitialized).

1.17.2 Initializing Collections

Initializing an index−by table is trivial −− simply declaring it also initializes it. Initializing a nested table or
VARRAY can be done explicitly, with a constructor, or implicitly with a fetch from the database or a direct
assignment of another collection variable.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.17.1 Syntax for Declaring Collection Datatypes 63

The constructor is a built−in function with the same name as the collection. It constructs the collection from
the elements passed to it. We can create a nested table of colors and initialize it to three elements with a
constructor:

DECLARE
 TYPE colors_tab_t IS TABLE OF VARCHAR2(30);

 colors_tab_t('RED','GREEN','BLUE');
BEGIN

We can create our nested table of colors and initialize it with a fetch from the database:

−− Create the nested table to exist in the database.
CREATE TYPE colors_tab_t IS TABLE OF VARCHAR2(32);

−− Create table with nested table type as column.
CREATE TABLE color_models
(model_type VARCHAR2(12)
,colors color_tab_t)
NESTED TABLE colors STORE AS
 color_model_colors_tab;

−− Add some data to the table.
INSERT INTO color_models
 VALUES('RGB',color_tab_t('RED','GREEN','BLUE'));
INSERT INTO color_models
 VALUES('CYMK',color_tab_t('CYAN','YELLOW',
 'MAGENTA' 'BLACK'));

−− Initialize a collection of colors from the table.
DECLARE
 basic_colors colors_tab_t;
BEGIN
 SELECT colors INTO basic_colors
 FROM color_models
 WHERE model_type = 'RGB';
...
END;

The third initialization technique is by assignment from an existing collection:

DECLARE
 basic_colors Color_tab_t :=
 Color_tab_t ('RED','GREEN','BLUE');

 my_colors Color_tab_t;
BEGIN
 my_colors := basic_colors;
 my_colors(2) := 'MUSTARD';

1.17.3 Adding and Removing Elements

Elements in an index−by table can be added simply by referencing new subscripts. To add elements to nested
tables or VARRAYs, you must first enlarge the collection with the EXTEND function, and then you can
assign a value to a new element using one of the methods described in the previous section.

Use the DELETE function to remove an element in a nested table regardless of its position. The TRIM
function can also be used to remove elements, but only from the end of a collection. To avoid unexpected
results, do not use both DELETE and TRIM on the same collection.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.17.3 Adding and Removing Elements 64

1.17.4 Collection Pseudo−Functions

There are several psuedo−functions defined for collections. They include THE, CAST, MULTISET, and
TABLE.

THE
Maps a single column's value in a single row into a virtual database table. Syntactically, this is similar
to an inline view, where a subquery is used in the FROM clause.

SELECT VALUE(c)
 FROM THE(SELECT colors
 FROM color_models
 WHERE model_type = 'RGB') c;

The pseudo−function THE will work in Oracle8i but its use is discouraged. Use the 8i TABLE()
function instead.

CAST
Maps a collection of one type to a collection of another type.

SELECT column_value
FROM THE(SELECT CAST(colors AS color_tab_t)
 FROM color_models_a
 WHERE model_type ='RGB');

MULTISET
Maps a database table to a collection. With MULTISET and CAST, you can retrieve rows from a
database table as a collection−typed column.

SELECT b.genus ,b.species,
 CAST(MULTISET(SELECT bh.country
 FROM bird_habitats bh
 WHERE bh.genus = b.genus
 AND bh.species = b.species)
 AS country_tab_t)
FROM birds b;

TABLE
Maps a collection to a database table; the inverse of MULTISET.

SELECT *
 FROM color_models c
 WHERE 'RED' IN (SELECT * FROM TABLE(c.colors));

In Oracle8i PL/SQL, you can use TABLE() to unnest a transient collection:

DECLARE
 birthdays Birthdate_t :=
 Birthdate_t('24−SEP−1984', '19−JUN−1993');
BEGIN
 FOR the_rec IN
 (SELECT COLUMN_VALUE
 FROM TABLE(CAST(birthdays AS Birthdate_t)))

1.17.5 Collection Methods

There are a number of built−in functions (methods) defined for all collections. These methods are called with
dot notation:

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.17.4 Collection Pseudo−Functions 65

collection_name.method_name[(parameters)]

The methods are described in the following table.

Collection Method Description

COUNT function Returns the current number of elements in the collection.

DELETE [(i [,j]
)] procedure

Removes element i or elements i through j from a nested table or index−by table. When
called with no parameters, removes all elements in the collection. Reduces the COUNT
if the element is not already DELETEd. Does not apply to VARRAYs.

EXISTS (i)
function

Returns TRUE or FALSE to indicate whether element i exists. If the collection is an
uninitialized nested table or VARRAY, returns FALSE.

EXTEND [(n [,i]
)] procedure

Appends n elements to a collection, initializing them to the value of element i. n is
optional and defaults to 1.

FIRST function Returns the smallest index in use. Returns NULL when applied to empty initialized
collections.

LAST function Returns the largest index in use. Returns NULL when applied to empty initialized
collections.

LIMIT function Returns the maximum number of allowed elements in a VARRAY. Returns NULL for
index−by tables and nested tables.

PRIOR (i)
function

Return the index immediately before element i. Returns NULL if i is less than or equal
to FIRST.

NEXT (i)
function

Return the index immediately after element i. Returns NULL if i is greater than or equal
to COUNT.

TRIM [(n)]
procedure

Removes n elements at the end of the collection with the largest index. n is optional and
defaults to 1. If n is NULL, TRIM does nothing. Index−by tables cannot be TRIMmed.

The EXISTS function returns a BOOLEAN and all other functions return BINARY_INTEGER. All
parameters are of the BINARY_INTEGER type.

Only EXISTS can be used on uninitialized nested tables or VARRAYs. Other methods applied to these
atomically null collections will raise the COLLECTION_IS_NULL exception.

DELETE and TRIM both remove elements from a nested table, but TRIM also removes the placeholder,
while DELETE does not. This behavior may be confusing, since TRIM can remove previously DELETED
elements.

Here is an example of some collection methods in use:

DECLARE
 TYPE colors_tab_t IS TABLE OF VARCHAR2(30);
 my_list colors_tab_t :=
 colors_tab_t('RED','GREEN','BLUE');
 element BINARY_INTEGER;
BEGIN
 DBMS_OUTPUT.PUT_LINE('my_list has '
 ||my_list.COUNT||' elements');
 my_list.DELETE(2); −− delete element two
 DBMS_OUTPUT.PUT_LINE('my_list has '
 ||my_list.COUNT||' elements');

 FOR element IN my_list.FIRST..my_list.LAST
 LOOP
 IF my_list.EXISTS(element)
 THEN

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.17.4 Collection Pseudo−Functions 66

 DBMS_OUTPUT.PUT_LINE(my_list(element)
 || ' Prior= '||my_list.PRIOR(element)
 || ' Next= ' ||my_list.NEXT(element));
 ELSE
 DBMS_OUTPUT.PUT_LINE('Element '|| element
 ||' deleted. Prior= '||my_
 list.PRIOR(element)
 || ' Next= '||my_list.NEXT(element));
 END IF;
 END LOOP;
END;

This example gives the output:

my_list has 3 elements
my_list has 2 elements
RED Prior= Next= 3
Element 2 deleted. Prior= 1 Next= 3
BLUE Prior= 1 Next=

1.17.6 Privileges

As with other TYPEs in the database, you need the EXECUTE privilege on that TYPE in order to use a
collection type created by another schema (user account) in the database.

1.17.7 Bulk Binds (Oracle8i)

Starting with Oracle8i, you can use collections to improve the performance of SQL operations executed
iteratively by using bulk binds. Bulk binds reduce the number of round−trips that must be made between a
client application and the database. Two PL/SQL language constructs implement bulk binds: FORALL and
BULK COLLECT INTO.

The syntax for the FORALL statement is:

FORALL bulk_index IN lower_bound..upper_bound
 sql_statement;

bulk_index can be used only in the sql_statement and only as a collection index (subscript). When PL/SQL
processes this statement, the whole collection, instead of each individual collection element, is sent to the
database server for processing. To delete all the accounts in the collection inactives from the table ledger, do
this:

FORALL i IN inactives.FIRST..inactives.LAST
 DELETE FROM ledger WHERE acct_no = inactives(i);

The syntax for the BULK COLLECT INTO clause is:

BULK COLLECT INTO collection_name_list;

where collection_name_list is a comma−delimited list of collections, one for each column in the SELECT. As
of Oracle8i, collections of records cannot be a target of a BULK COLLECT INTO clause. However, 8i does
support retrieving a set of typed objects and "bulk collecting" them into a collection of objects.

The BULK COLLECT INTO clause can be used in SELECT INTO, FETCH INTO, or RETURNING INTO
statements. For example:

DECLARE
 TYPE vendor_name_tab IS TABLE OF
 vendors.name%TYPE;

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.17.6 Privileges 67

 TYPE vendor_term_tab IS TABLE OF
 vendors.terms%TYPE;
 v_names vendor_name_tab;
 v_terms vendor_term_tab;
BEGIN
 SELECT name, terms
 BULK COLLECT INTO v_names, v_terms
 FROM vendors
 WHERE terms < 30;
 ...
END;

The next function deletes employees in an input list of departments, and the (Oracle8) SQL RETURNING
clause returns a list of deleted employees:

FUNCTION whack_emps_by_dept (deptlist dlist_t)
RETURN enolist_t
IS
 enolist enolist_t;
BEGIN
 FORALL adept IN deptlist.FIRST..deptlist.LAST
 DELETE FROM emp WHERE deptno IN
 deptlist(adept)
 RETURNING empno BULK COLLECT INTO enolist;
 RETURN Enolist;
END;

You can use the SQL%BULK_ROWCOUNT cursor attribute for bulk bind operations. It is like an index−by
table containing the number of rows affected by the executions of the bulk bound statements. The nth element
of SQL%BULK_ROWCOUNT contains the number of rows affected by nth execution of the SQL statement.
For example:

FORALL i IN inactives.FIRST..inactives.LAST
 DELETE FROM ledger WHERE acct_no = inactives(i);
FOR counter IN inactives.FIRST..inactives.LAST
LOOP
 IF SQL%BULK_ROWCOUNT(counter) = 0
 THEN
 DBMS_OUTPUT.PUT_LINE('No rows deleted for '||
 counter);
 END IF;
END LOOP;

You cannot pass SQL%BULK_ROWCOUNT as a parameter to another program, or use an aggregate
assignment to another collection. %ROWCOUNT contains a summation of all %BULK_ROWCOUNT
elements. %FOUND and %NOTFOUND reflect only the last execution of the SQL statement.

1.16 Oracle8 Objects 1.18 External Procedures

Copyright (c) 2000 O'Reilly & Associates. All rights reserved.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.17.6 Privileges 68

Chapter 1
Oracle PL/SQL Language

Pocket Reference

1.18 External Procedures

External procedures provide a mechanism for calling out to a non−database program, such as a DLL under
NT or a shared library under Unix. Every session calling an external procedure will have its own extproc
process started by the listener. This extproc process is started with the first call to the external procedure and
terminates when the session exits. The shared library needs to have a corresponding library created for it in
the database.

1.18.1 Creating an External Procedure

The following are the steps you need to follow in order to create an external procedure.

1.18.1.1 Set up the listener

External procedures require a listener. If you are running a Net8 listener, it can be used as the extproc listener
as well. See the Oracle8 Administrators' Guide or the Net8 Administrators' Guide for the details on
configuring your listener.

1.18.1.2 Identify or create the shared library or DLL

This step has nothing to do with PL/SQL or the database. You must write your own C routines and link them
into a shared library/DLL or use an existing library's functions or procedures. In the simple example below,
we will use the existing random number generating calls available from the operating system.

1.18.1.3 Create the library in the database

Create a library in the database for the shared library or DLL using the CREATE LIBRARY statement:

CREATE [OR REPLACE] LIBRARY library_name IS | AS
 'absolute_path_and_file';

To remove libraries from the database, you use the DROP LIBRARY statement:

DROP LIBRARY library_name;

To call out to the C runtime library's rand function, you don't have to code any C routines at all, since the call
is already linked into a shared library, and because its arguments are directly type−mappable to PL/SQL. If
the rand function is in the standard /lib/libc.so shared library, as on Solaris, you would issue the following
CREATE LIBRARY statement:

CREATE OR REPLACE LIBRARY libc_l AS
 '/lib/libc.so'; −− References C runtime library.

This is the typical corresponding statement for NT:

CREATE OR REPLACE LIBRARY libc_l AS

69

 'C:\WINNT\SYSTEM32\CRTDLL.DLL';

1.18.1.4 Create the PL/SQL wrapper for the external procedure

The syntax for the wrapper procedure is:

CREATE [OR REPLACE] PROCEDURE proc_name
 [parm_list]
AS|IS EXTERNAL
 LIBRARY library_name
 [NAME external_name]
 [LANGUAGE language_name]
 [CALLING STANDARD C | PASCAL]
 [WITH CONTEXT]
 [PARAMETERS (external_parameter_list)];

The following are the syntactic elements defined:

proc_name
The name of the wrapper procedure.

library_name
The name of the library created with the CREATE LIBRARY statement.

external_name
The name of the external routine as it appears in the library. It defaults to the wrapper package name.
PL/SQL package names are usually saved in uppercase, so the external_name may need to be
enclosed in double quotes to preserve case.

language_name
The language that the external routine was written in. It defaults to C.

CALLING STANDARD
The calling standard, which defaults to C. The Pascal calling standard reverses the order of the
parameters, and the called routine is responsible for popping the parameters off the stack.

WITH CONTEXT
Used to pass a context pointer to the external routine, so it can make OCI calls back to the database.

PARAMETERS
Identify the external_parameter_list, which is a comma−delimited list containing the position and
datatype of parameters that get passed to the external routine. For more details on the
external_parameter_list, see the next section, Section 1.12.3, "Parameters".

The wrapper PL/SQL function or procedure is usually in a package. Using the preceding random number
generator example, we could create the wrapper package as follows:

CREATE OR REPLACE PACKAGE random_utl
AS
 FUNCTION rand RETURN PLS_INTEGER;
 PRAGMA RESTRICT_REFERENCES(rand,WNDS,RNDS,WNPS,RNPS);

 PROCEDURE srand (seed IN PLS_INTEGER);
 PRAGMA RESTRICT_REFERENCES(srand,WNDS,RNDS,WNPS,RNPS);
END random_utl;

CREATE PACKAGE BODY random_utl
AS
 FUNCTION rand RETURN PLS_INTEGER

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.18.1 Creating an External Procedure 70

 IS
 EXTERNAL −− Keyword to indicate external
 routine.
 LIBRARY libc_l −− The library created above.
 NAME "rand" −− Function name in the
 library.
 LANGUAGE C; −− Language of routine.

 PROCEDURE srand (seed IN PLS_INTEGER)
 IS
 EXTERNAL LIBRARY libc_l
 NAME "srand" −− Name is lowercase in this
 library.
 LANGUAGE C
 PARAMETERS (seed ub4); −−Map to unsigned
 4byte.
INT
END random_utl;

To use this external random number function, we simply call the package procedure srand to seed the
generator, then the package function rand to get random numbers:

DECLARE
 random_nbr PLS_INTEGER;
 seed PLS_INTEGER;
BEGIN
 SELECT TO_CHAR(SYSDATE,'SSSSS') INTO seed
 FROM dual;

 random_utl.srand(seed); −− Seed the generator.

 random_nbr := random_utl.rand; −− Get the number.
 DBMS_OUTPUT.PUT_LINE('number='||random_nbr);

 random_nbr := random_utl.rand; −− Get the number.
 DBMS_OUTPUT.PUT_LINE('number='||random_nbr);
END;

You can generate random numbers without the complexity or overhead of an external call by using the
built−in package DBMS_RANDOM. To learn more about DBMS_RANDOM and other built−ins, see
O'Reilly's books Oracle Built−in Packages and Oracle PL/SQL Built−ins Pocket Reference.

1.18.2 Parameters

When it comes to passing PL/SQL variables to C variables, we encounter many inconsistencies. For example,
PL/SQL supports nullity, while C does not; PL/SQL can have variables in different character sets, while C
cannot; and the datatypes in PL/SQL do not directly map to C datatypes.

The PARAMETERS clause specifies the external parameter list, a comma−delimited list containing
parameters. The syntax for each parameter in the list is:

CONTEXT | RETURN | parameter_name [property]
 [BY REFERENCE] [external_datatype]

The keyword CONTEXT indicates the position in the parameter list at which the context pointer will be
passed. It is required if the WITH CONTEXT clause is being used to pass a context pointer to the called
program. By convention, CONTEXT appears as the first parameter in the external parameter list. If
CONTEXT is used, the property, BY REFERENCE, and external_datatype optional sections are invalid.

The keyword RETURN indicates that the descriptions are for the return value from the external routine. By
default, RETURN is passed by value. You can use the keywords BY REFERENCE to pass by reference (use

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.18.2 Parameters 71

pointers).

parameter_name is a PL/SQL formal parameter name. By default, IN formal parameters are passed by value.
You can use the key words BY REFERENCE to pass by reference (as a pointer). IN OUT and OUT formal
parameters are always passed by reference.

property breaks out further to the general Oracle8 syntax:

INDICATOR | LENGTH | MAXLEN | CHARSETID| CHARSETFORM

The general Oracle8i syntax is:

INDICATOR [STRUCT | TDO] | LENGTH | MAXLEN |
 CHARSETID | CHARSETFORM | SELF

INDICATOR indicates whether the corresponding parameter is NULL. In the C program, if the indicator
equals the constant OCI_IND_NULL, the parameter is NULL. If the indicator equals the constant
OCI_IND_NOTNULL, the indicator is not NULL. For IN parameters, INDICATOR is passed by value (by
default). For IN OUT, OUT, and RETURN parameters, INDICATOR is passed by reference.

In Oracle8i, you can pass a user−defined type to an external procedure. To do so, you will typically pass three
parameters: the actual object value; a TDO (Type Descriptor Object) parameter as defined in C by the Oracle
Type Translator; and an INDICATOR STRUCT parameter, to designate whether the object is NULL.

LENGTH and MAXLEN can be used to pass the current and maximum length of strings or RAWs. For IN
parameters, LENGTH is passed by value (by default). For IN OUT, OUT, and RETURN parameters,
LENGTH is passed by reference. MAXLEN is not valid for IN parameters. For IN OUT, OUT, and RETURN
parameters, MAXLEN is passed by reference and is read−only.

CHARSETID and CHARSETFORM are used to support NLS character sets. They are the same as the OCI
attributes OCI_ATTR_CHARSET_ID and OCI_ATTR_CHARSET_FORM. For IN parameters,
CHARSETID and CHARSETFORM are passed by value (by default) and are read−only. For IN OUT, OUT,
and RETURN parameters, CHARSETID and CHARSETFORM are passed by reference and are read−only.

SELF is used if an object member function is implemented as a callout instead of a PL/SQL routine.

1.17 Collections 1.19 Java Language
Integration

Copyright (c) 2000 O'Reilly & Associates. All rights reserved.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.18.2 Parameters 72

Chapter 1
Oracle PL/SQL Language

Pocket Reference

1.19 Java Language Integration

In Oracle8i, Java(TM) programmers can write server−side classes that invoke SQL and PL/SQL using
standard JDBC(TM) or SQLJ calls. PL/SQL programmers can call server−side Java methods by writing a
PL/SQL cover or call spec for Java using Oracle DDL.

Server−side Java in Oracle may be faster than PL/SQL for compute−intensive programs, but not as nimble for
database access. PL/SQL is much more efficient for database−intensive routines because, unlike Java, it
doesn't have to pay the overhead for converting SQL datatypes for use inside the stored program. Oracle
programmers will want to continue to use PL/SQL for programs that perform a lot of database I/O, and use
Java for the best raw computation performance.

The first step in creating a Java stored procedure (JSP) is writing or otherwise obtaining functional Java
code. Having source code is not necessary, though, so you can use class libraries from third parties. The
classes must, however, meet the following requirements:

•
Methods published to SQL and PL/SQL must be declared static. PL/SQL has no mechanisms for
instantiating non−static Java classes.

•
The classes must not issue any GUI calls (for example, to AWT) at runtime.

If you write your own JSP, and it needs to connect to the database for access to tables or stored procedures,
use standard JDBC and/or SQLJ calls in your code. Many JDBC and SQLJ reference materials are available
to provide assistance in calling SQL or PL/SQL from Java, but be sure to review the Oracle−specific
documentation that ships with Oracle8i.

Once you have the Java class in hand, either in source or .class file format, the next step is loading it into the
database. Oracle's loadjava command−line utility is a convenient way to accomplish the load. Refer to
Oracle's documentation for further assistance with loadjava.

The third step is to create a call spec for the Java method, specifying the AS LANGUAGE JAVA clause of
the CREATE command. You may create a function or procedure cover as appropriate.

Finally, you may grant execute privileges on the new JSP using GRANT EXECUTE, and PL/SQL routines
can now call the JSP as if it were another PL/SQL module.

1.19.1 Example

Let's write a simple "Hello, World" JSP that will accept an argument:

package oreilly.plsquick.demos;

public class Hello {

73

 public static String sayIt (String toWhom) {
 return "Hello, " + toWhom + "!";
 }
}

Saved in a file called Hello.java, we can load the source code directly into Oracle. Doing so will automatically
compile the code. A simple form of the loadjava command:

loadjava −user scott/tiger −oci8 oreilly/plsquick/
 demos/Hello.java

The Hello.java file follows the Java file placement convention for packages and so exists in a subdirectory
named oreilly/plsquick/demos.

Now we can fire up our favorite SQL interpreter, connect as SCOTT/TIGER, and create the call spec for the
Hello.sayIt() method:

CREATE FUNCTION hello_there (to_whom IN VARCHAR2)
 RETURN VARCHAR2
 AS LANGUAGE JAVA
 NAME 'oreilly.plsquick.demos.Hello.sayIt
 (java.lang.String) return java.lang.String';
/

Now we can call our function very easily:

BEGIN
 DBMS_OUTPUT.PUT_LINE(hello_there('world'));
END;
/

And we get:

Hello, world!

as the expected output.

1.19.2 Publishing Java to PL/SQL

To write a call spec, use the AS LANGUAGE JAVA clause in a CREATE statement. The syntax for this
clause is:

{ IS | AS } LANGUAGE JAVA
 NAME 'method_fullname [(type_fullname,...]
 [return type_fullname]'

method_fullname is the package−qualified name of the Java class and method. It is case−sensitive and uses
dots to separate parts of the package full name. type_fullname is the package−qualified name of the Java
datatype.

Notice that a simple string, not an SQL name, follows the NAME keyword.

Type mapping follows most JDBC rules regarding the legal mapping of SQL types to Java types. Oracle
extensions exist for Oracle−specific datatypes.

Most datatype mappings are relatively straightforward, but passing Oracle8 objects of a user−defined type is
harder than one would think. Oracle provides a JPublisher tool that generates the Java required to encapsulate
an Oracle8 object and its corresponding REF. Refer to Oracle's JPublisher documentation for guidelines on
usage.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.19.2 Publishing Java to PL/SQL 74

The AS LANGUAGE JAVA clause is the same whether you are using Java as a standalone JSP, the
implementation of a packaged program, or the body of an object type method. For example, here is the
complete syntax for creating JSPs as PL/SQL−callable functions or procedures:

CREATE [OR REPLACE]
{ PROCEDURE procedure_name [(param[, param]...)]
 | FUNCTION function_name [(param[, param]...)]
 RETURN sql_type
}
[AUTHID {DEFINER | CURRENT_USER}]
[PARALLEL_ENABLE]
[DETERMINISTIC]
{ IS | AS } LANGUAGE JAVA
 NAME 'method_fullname [(type_fullname,...]
 [return type_fullname]'

When using Java as the implementation of a packaged procedure or function, Oracle allows you to place the
Java call spec in either the package specification (where the call spec substitutes for the subprogram
specification) or in the package body (where the call spec substitutes for the subprogram body).

Similarly, when using JSPs in object type methods, the Java call spec can substitute for either the object type
method specification or its body.

Note that Java functions typically map to PL/SQL functions, but Java functions declared void map to PL/SQL
procedures. Also, you will quickly learn that mistakes in mapping PL/SQL parameters to Java parameters
become evident only at runtime.

1.19.3 Data Dictionary

To learn what Java library units are available in your schema, look in the USER_OBJECTS data dictionary
view where the object_type is like `JAVA%'. If you see a Java class with INVALID status, it has not yet been
successfully resolved. Note that the names of the Java source library units need not match the names of the
classes they produce.

As of press time, there is no apparent way to discover which stored programs are implemented as Java stored
procedures. You can look in the USER_SOURCE view for named programs that contain the source text `AS
LANGUAGE JAVA', but that may not yield accurate results. The USER_DEPENDENCIES view does not
track the relationship between PL/SQL cover programs and their underlying Java class.

Even if you have loaded the Java source code into the database, there is no supported way of retrieving the
source from the data dictionary.

1.18 External Procedures

Copyright (c) 2000 O'Reilly & Associates. All rights reserved.

[Chapter 1] Oracle PL/SQL Language Pocket Reference

1.19.3 Data Dictionary 75

By Steven Feuerstein, Bill Pribyl & Chip Dawes; ISBN 1−56592−457−6E
First Edition, published 1999−04−01.
(See the catalog page for this book.)

Search the text of Oracle PL/SQL Language Pocket Reference.

Table of Contents

Chapter 1: Oracle PL/SQL Language Pocket Reference

1.1: Introduction
1.2: Acknowledgments
1.3: Conventions
1.4: PL/SQL Language Fundamentals
1.5: Variables and Program Data
1.6: Conditional and Sequential Control
1.7: Loops
1.8: Database Interaction and Cursors
1.9: Cursors in PL/SQL
1.10: Exception Handling
1.11: Records in PL/SQL
1.12: Named Program Units
1.13: Triggers
1.14: Packages
1.15: Calling PL/SQL Functions in SQL
1.16: Oracle8 Objects
1.17: Collections
1.18: External Procedures
1.19: Java Language Integration

Copyright © 2000 O'Reilly & Associates. All Rights Reserved.

76...1

http://www.oreilly.com/catalog/orplpr/
http://www.oreilly.com/

	Table of Contents
	
	1. Oracle PL/SQL Language Pocket Reference
	1.1 Introduction

	
	1.2 Acknowledgments

	
	1.3 Conventions

	
	1.4 PL/SQL Language Fundamentals
	1.4.1 The PL/SQL Character Set

	
	1.5 Variables and Program Data
	1.5.1 Scalar Datatypes
	1.5.2 NLS Character Datatypes
	1.5.3 LOB Datatypes
	1.5.4 NULLs in PL/SQL
	1.5.5 Declaring Variables
	1.5.6 Anchored Declarations
	1.5.7 Programmer-Defined Subtypes

	
	1.6 Conditional and Sequential Control
	1.6.1 Conditional Control Statements
	1.6.2 Sequential Control Statements

	
	1.7 Loops
	1.7.1 The Simple Loop
	1.7.2 The Numeric FOR Loop
	1.7.3 The Cursor FOR Loop
	1.7.4 The WHILE Loop
	1.7.5 The REPEAT UNTIL Loop Emulation
	1.7.6 The EXIT Statement
	1.7.7 Loop Labels

	
	1.8 Database Interaction and Cursors
	1.8.1 Transaction Management
	1.8.2 Native Dynamic SQL (Oracle8i)
	1.8.3 Autonomous Transactions (Oracle8i)

	
	1.9 Cursors in PL/SQL
	1.9.1 Explicit Cursors
	1.9.2 Implicit Cursors
	1.9.3 Cursor Variables

	
	1.10 Exception Handling
	1.10.1 Declaring Exceptions
	1.10.2 Raising Exceptions
	1.10.3 Scope
	1.10.4 Propagation

	
	1.11 Records in PL/SQL
	1.11.1 Declaring Records
	1.11.2 Referencing Fields of Records
	1.11.3 Record Assignment
	1.11.4 Nested Records

	
	1.12 Named Program Units
	1.12.1 Procedures
	1.12.2 Functions
	1.12.3 Parameters

	
	1.13 Triggers
	1.13.1 Creating Triggers
	1.13.2 Trigger Predicates
	1.13.3 DML Events
	1.13.4 DDL Events (Oracle8i)
	1.13.5 Database Events (Oracle8i)

	
	1.14 Packages
	1.14.1 Overview of Package Structure
	1.14.2 Referencing Package Elements
	1.14.3 Package Data
	1.14.4 Package Initialization

	
	1.15 Calling PL/SQL Functions in SQL
	1.15.1 Syntax for Calling Stored Functions in SQL
	1.15.2 Requirements and Restrictions on Stored Functions in SQL
	1.15.3 Calling Packaged Functions in SQL

	
	1.16 Oracle8 Objects
	1.16.1 Object Types
	1.16.2 Methods
	1.16.3 Manipulating Objects in PL/SQL and SQL
	1.16.4 Changing Object Types

	
	1.17 Collections
	1.17.1 Syntax for Declaring Collection Datatypes
	1.17.2 Initializing Collections
	1.17.3 Adding and Removing Elements
	1.17.4 Collection Pseudo-Functions
	1.17.5 Collection Methods
	1.17.6 Privileges
	1.17.7 Bulk Binds (Oracle8i)

	
	1.18 External Procedures
	1.18.1 Creating an External Procedure
	1.18.2 Parameters

	
	1.19 Java Language Integration
	1.19.1 Example
	1.19.2 Publishing Java to PL/SQL
	1.19.3 Data Dictionary

	
	Table of Contents

